These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 1520221)

  • 1. Effect of simulated air combat maneuvering on muscle glycogen and lactate.
    Bain B; Jacobs I; Buick F
    Aviat Space Environ Med; 1992 Jun; 63(6):505-9. PubMed ID: 1520221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic energetics of the simulated aerial combat maneuver (SACM).
    Burton RR; Whinnery JE; Forster EM
    Aviat Space Environ Med; 1987 Aug; 58(8):761-7. PubMed ID: 3632535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory muscle fatigue during simulated air combat maneuvering (SACM).
    Bain B; Jacobs I; Buick F
    Aviat Space Environ Med; 1997 Feb; 68(2):118-25. PubMed ID: 9125087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyographic indices of muscle fatigue during simulated air combat maneuvering.
    Bain B; Jacobs I; Buick F
    Aviat Space Environ Med; 1994 Mar; 65(3):193-8. PubMed ID: 8185546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of anaerobic power in human tolerance to simulated aerial combat maneuvers.
    Wiegman JF; Burton RR; Forster EM
    Aviat Space Environ Med; 1995 Oct; 66(10):938-42. PubMed ID: 8526829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effectiveness of specific weight training regimens on simulated aerial combat maneuvering G tolerance.
    Epperson WL; Burton RR; Bernauer EM
    Aviat Space Environ Med; 1985 Jun; 56(6):534-9. PubMed ID: 4015564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimum sampling times for maximum blood lactate levels after exposures to sustained +Gz.
    Tamir A; Burton RR; Forster EM
    Aviat Space Environ Med; 1988 Jan; 59(1):54-6. PubMed ID: 3355467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human responses to repeated high G stimulated aerial combat maneuvers.
    Burton RR
    Aviat Space Environ Med; 1980 Nov; 51(11):1185-92. PubMed ID: 7213262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration induced voltage variations in the electrocardiogram during exhaustive simulated aerial combat maneuvering.
    Whinnery JE
    Aviat Space Environ Med; 1982 Feb; 53(2):147-52. PubMed ID: 7059331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is there central fatigue during simulated air combat maneuvering?
    Bain B; Jacobs I; Buick F
    Aviat Space Environ Med; 1995 Jan; 66(1):1-5. PubMed ID: 7695543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new hydrostatic anti-G suit vs. a pneumatic anti-G system: preliminary comparison.
    Eiken O; Kölegård R; Lindborg B; Aldman M; Karlmar KE; Linder J
    Aviat Space Environ Med; 2002 Jul; 73(7):703-8. PubMed ID: 12137110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of strength training and centrifuge exposure on +Gz tolerance.
    Bulbulian R; Crisman RP; Thomas ML; Meyer LG
    Aviat Space Environ Med; 1994 Dec; 65(12):1097-104. PubMed ID: 7872910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Female acceleration tolerance: effects of menstrual state and physical condition.
    Heaps CL; Fischer MD; Hill RC
    Aviat Space Environ Med; 1997 Jun; 68(6):525-30. PubMed ID: 9184741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of differential physical conditioning regimens on simulated aerial combat maneuvering tolerance.
    Epperson WL; Burton RR; Bernauer EM
    Aviat Space Environ Med; 1982 Nov; 53(11):1091-7. PubMed ID: 7150169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved anti-G protection boosts sortie generation ability.
    Tong A; Balldin UI; Hill RC; Dooley JW
    Aviat Space Environ Med; 1998 Feb; 69(2):117-20. PubMed ID: 9491248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hypoxia and hyperoxia on human +Gz duration tolerance.
    Besch EL; Werchan PM; Wiegman JF; Nesthus TE; Shahed AR
    J Appl Physiol (1985); 1994 Apr; 76(4):1693-700. PubMed ID: 8045849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle metabolism, temperature, and function during prolonged, intermittent, high-intensity running in air temperatures of 33 degrees and 17 degrees C.
    Morris JG; Nevill ME; Boobis LH; Macdonald IA; Williams C
    Int J Sports Med; 2005 Dec; 26(10):805-14. PubMed ID: 16320162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postexercise muscle glycogen synthesis with combined glucose and fructose ingestion.
    Wallis GA; Hulston CJ; Mann CH; Roper HP; Tipton KD; Jeukendrup AE
    Med Sci Sports Exerc; 2008 Oct; 40(10):1789-94. PubMed ID: 18799989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycogen and lactate metabolism during low-intensity exercise in man.
    Nordheim K; Vøllestad NK
    Acta Physiol Scand; 1990 Jul; 139(3):475-84. PubMed ID: 2239351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tactical vs. other simulated aerial combat maneuvers.
    Tong A; Balldin UI; Dooley JW; Hill RC
    Aviat Space Environ Med; 1998 May; 69(5):525-7. PubMed ID: 9591627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.