These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15202238)
1. [Formation of an acetic-acid type microbial metabolism pathway and its stability during the course of sulfate-reduction]. Wang AJ; Ren NQ; Du DZ; Xu XW; Wu LH Huan Jing Ke Xue; 2004 Mar; 25(2):73-6. PubMed ID: 15202238 [TBL] [Abstract][Full Text] [Related]
2. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. Wang A; Ren N; Wang X; Lee D J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734 [TBL] [Abstract][Full Text] [Related]
3. [Effect of COD/SO4(2-) ratio on the ecological characteristic in acidogenic sulfate-reducing reactor]. Ren N; Wang A Huan Jing Ke Xue; 2002 Jul; 23(4):52-6. PubMed ID: 12371103 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate. Icgen B; Harrison S Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063 [TBL] [Abstract][Full Text] [Related]
6. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition. Liu Y; Zhang Y; Ni BJ Environ Sci Technol; 2015 Feb; 49(4):2123-31. PubMed ID: 25606811 [TBL] [Abstract][Full Text] [Related]
7. Spatial variability of sulfate reduction in a shallow aquifer. Musslewhite CL; Swift D; Gilpen J; McInerney MJ Environ Microbiol; 2007 Nov; 9(11):2810-9. PubMed ID: 17922764 [TBL] [Abstract][Full Text] [Related]
8. Microbial sulfate reduction in a liquid-solid fluidized bed reactor. Nagpal S; Chuichulcherm S; Peeva L; Livingston A Biotechnol Bioeng; 2000 Nov; 70(4):370-80. PubMed ID: 11005919 [TBL] [Abstract][Full Text] [Related]
9. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Jong T; Parry DL Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360 [TBL] [Abstract][Full Text] [Related]
10. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater. Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306 [TBL] [Abstract][Full Text] [Related]
11. Effect of sulfate addition on methane production and sulfate reduction in a mesophilic acetate-fed anaerobic reactor. Yang SL; Tang YQ; Gou M; Jiang X Appl Microbiol Biotechnol; 2015 Apr; 99(7):3269-77. PubMed ID: 25427678 [TBL] [Abstract][Full Text] [Related]
12. [Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process]. Ren N; Liu M; Wang A; Ding J; Li H Huan Jing Ke Xue; 2003 Jul; 24(4):89-93. PubMed ID: 14551964 [TBL] [Abstract][Full Text] [Related]
13. Long-term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Omil F; Lens P; Visser A; Hulshoff Pol LW; Lettinga G Biotechnol Bioeng; 1998 Mar; 57(6):676-85. PubMed ID: 10099247 [TBL] [Abstract][Full Text] [Related]
14. [Bio-electrochemical effect on hydrogenotrophic sulfate reduction stimulated by electrical field in the presence of H2 under atmospheric pressure]. Xu HW; Zhang X; Yang SS; Li GH Huan Jing Ke Xue; 2009 Jul; 30(7):1931-6. PubMed ID: 19774987 [TBL] [Abstract][Full Text] [Related]
15. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Jong T; Parry DL Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731 [TBL] [Abstract][Full Text] [Related]
16. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510 [TBL] [Abstract][Full Text] [Related]
17. Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization. Guo J; Wang J; Qiu Y; Sun J; Jiang F Chemosphere; 2019 Dec; 236():124381. PubMed ID: 31545190 [TBL] [Abstract][Full Text] [Related]
18. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies. van Lier JB; Lens PN; Pol LW Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084 [TBL] [Abstract][Full Text] [Related]