These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 15202494)
1. Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Evaluation of its potential as a therapeutic target. Castro-Pinto DB; Echevarria A; Genestra MS; Cysne-Finkelstein L; Leon LL J Enzyme Inhib Med Chem; 2004 Feb; 19(1):57-63. PubMed ID: 15202494 [TBL] [Abstract][Full Text] [Related]
2. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Lima GS; Castro-Pinto DB; Machado GC; Maciel MA; Echevarria A Phytomedicine; 2015 Nov; 22(12):1133-7. PubMed ID: 26547537 [TBL] [Abstract][Full Text] [Related]
3. Effect of amidine derivatives on nitric oxide production by Leishmania amazonensis promastigotes and axenic amastigotes. Genestra M; Echevarria A; Cysne-Finkelstein L; Vignólio-Alves L; Leon LL Nitric Oxide; 2003 Feb; 8(1):1-6. PubMed ID: 12586535 [TBL] [Abstract][Full Text] [Related]
4. Protein kinase A of Leishmania amazonensis as a potential target for methoxy-amidine. Genestra M; Echevarria A; Cysne-Finkelstein L; Leon LL Arzneimittelforschung; 2001 Nov; 51(11):920-3. PubMed ID: 11765595 [TBL] [Abstract][Full Text] [Related]
5. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. da Rosa R; de Moraes MH; Zimmermann LA; Schenkel EP; Steindel M; Bernardes LSC Eur J Med Chem; 2017 Mar; 128():25-35. PubMed ID: 28152426 [TBL] [Abstract][Full Text] [Related]
6. Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Ortalli M; Ilari A; Colotti G; De Ionna I; Battista T; Bisi A; Gobbi S; Rampa A; Di Martino RMC; Gentilomi GA; Varani S; Belluti F Eur J Med Chem; 2018 May; 152():527-541. PubMed ID: 29758517 [TBL] [Abstract][Full Text] [Related]
7. The potential effects of new synthetic drugs against Leishmania amazonensis and Trypanosoma cruzi. Canto-Cavalheiro MM; Echevarria A; Araujo CA; Bravo MF; Santos LH; Jansen AM; Leon LL Microbios; 1997; 90(362):51-60. PubMed ID: 9301071 [TBL] [Abstract][Full Text] [Related]
9. Leishmania amazonensis trypanothione reductase: evaluation of the effect of glutathione analogs on parasite growth, infectivity and enzyme activity. Castro-Pinto DB; Lima EL; Cunha AS; Genestra M; De Léo RM; Monteiro F; Leon LL J Enzyme Inhib Med Chem; 2007 Feb; 22(1):71-5. PubMed ID: 17373550 [TBL] [Abstract][Full Text] [Related]
10. Synthesis and evaluation against Leishmania amazonensis of novel pyrazolo[3,4-d]pyridazinone-N-acylhydrazone-(bi)thiophene hybrids. Jacomini AP; Silva MJV; Silva RGM; Gonçalves DS; Volpato H; Basso EA; Paula FR; Nakamura CV; Sarragiotto MH; Rosa FA Eur J Med Chem; 2016 Nov; 124():340-349. PubMed ID: 27597410 [TBL] [Abstract][Full Text] [Related]
11. In vitro evaluation of (-)α-bisabolol as a promising agent against Leishmania amazonensis. Rottini MM; Amaral AC; Ferreira JL; Silva JR; Taniwaki NN; Souza Cda S; d'Escoffier LN; Almeida-Souza F; Hardoim Dde J; Gonçalves da Costa SC; Calabrese Kda S Exp Parasitol; 2015 Jan; 148():66-72. PubMed ID: 25448354 [TBL] [Abstract][Full Text] [Related]
12. In vitro evaluation of 4-phenyl-5-(4'-X-phenyl)-1,3,4-thiadiazolium-2-phenylaminide chlorides and 3[N-4'-X-phenyl]-1,2,3-oxadiazolium-5-olate derivatives on nitric oxide synthase and arginase activities of Leishmania amazonensis. Soares-Bezerra RJ; Leon LL; Echevarria A; Reis CM; Gomes-Silva L; Agostinho CG; Fernandes RA; Canto-Cavalheiro MM; Genestra MS Exp Parasitol; 2013 Sep; 135(1):50-4. PubMed ID: 23693031 [TBL] [Abstract][Full Text] [Related]
13. An effective diaryl derivative against Leishmania amazonensis and its influence on the parasite X macrophage interaction. Alves LV; Cysne-Finkelstein L; Temporal RM; Genestra MS; Leon LL J Enzyme Inhib Med Chem; 2004 Oct; 19(5):437-9. PubMed ID: 15648659 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Tavares GSV; Mendonça DVC; Lage DP; Antinarelli LMR; Soyer TG; Senna AJS; Matos GF; Dias DS; Ribeiro PAF; Batista JPT; Poletto JM; Brandão GC; Chávez-Fumagalli MA; Pereira GR; Coimbra ES; Coelho EAF Acta Trop; 2019 Mar; 191():29-37. PubMed ID: 30586571 [TBL] [Abstract][Full Text] [Related]
15. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461 [TBL] [Abstract][Full Text] [Related]
16. Effects of amidine derivatives on parasite-macrophage interaction and evaluation of toxicity. Temporal RM; Cysne-Finkelstein L; Echevarria A; de Souza MA; Sertà M; da Silva-Gonçalves AJ; Pirmez C; Leon LL Arzneimittelforschung; 2002; 52(6):489-93. PubMed ID: 12109051 [TBL] [Abstract][Full Text] [Related]
17. Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against Leishmania infantum and Leishmania amazonensis Species. Tavares GSV; Mendonça DVC; Lage DP; Granato JDT; Ottoni FM; Ludolf F; Chávez-Fumagalli MA; Duarte MC; Tavares CAP; Alves RJ; Coimbra ES; Coelho EAF Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):236-246. PubMed ID: 29481714 [TBL] [Abstract][Full Text] [Related]
18. Amidine derivatives and Leishmania amazonensis: an evaluation of the effect of nitric oxide (NO) production on the parasite-macrophage interaction. Temporal RM; Cysne-Finkelstein L; Echevarria A; Silva-Gonçalves AJ; Leon LL; Genestra MS J Enzyme Inhib Med Chem; 2005 Feb; 20(1):13-8. PubMed ID: 15895679 [TBL] [Abstract][Full Text] [Related]