These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15202580)

  • 1. Correlation of the thermal stability of phospholipid-based emulsions and the microviscosity measurements using fluorescence polarization.
    Zhang X; Kirsch LE
    Pharm Dev Technol; 2004; 9(2):219-27. PubMed ID: 15202580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The physical stability of thermally-stressed phospholipid-based emulsions containing methyl, propyl and heptyl parabens as model drugs.
    Zhang X; Kirsch LE
    Int J Pharm; 2003 Oct; 265(1-2):133-40. PubMed ID: 14522126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of techniques for evaluating the physical stability of parenteral emulsions.
    Zhang X; Kirsch LE
    PDA J Pharm Sci Technol; 2003; 57(4):300-15. PubMed ID: 14558703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of terminal heat sterilization on the stability of phospholipid-stabilized submicron emulsions.
    Chaturvedi PR; Patel NM; Lodhi SA
    Acta Pharm Nord; 1992; 4(1):51-5. PubMed ID: 1515053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of interfacial rheological properties of mixed emulsifier films on the stability of water-in-oil-in-water emulsions.
    Opawale FO; Burgess DJ
    J Pharm Pharmacol; 1998 Sep; 50(9):965-73. PubMed ID: 9811156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density and microviscosity studies of palm oil/water emulsions.
    Arboleya JC; Sutcliffe LH; Wilde PJ; Fairhurst SA
    J Agric Food Chem; 2005 Jun; 53(11):4448-53. PubMed ID: 15913309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surface charge on the stability of oil/water emulsions during steam sterilization.
    Chansiri G; Lyons RT; Patel MV; Hem SL
    J Pharm Sci; 1999 Apr; 88(4):454-8. PubMed ID: 10187757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new analysis method for the membrane viscosity from steady-state fluorescence depolarization.
    Araiso T; Koyama T
    Biorheology; 1988; 25(1-2):253-9. PubMed ID: 3196822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of fluorocarbon-in-water emulsions with added triglyceride.
    Weers JG; Arlauskas RA; Tarara TE; Pelura TJ
    Langmuir; 2004 Aug; 20(18):7430-5. PubMed ID: 15323486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties and stability of oil-in-water emulsions stabilized by coconut skim milk proteins.
    Onsaard E; Vittayanont M; Srigam S; McClements DJ
    J Agric Food Chem; 2005 Jul; 53(14):5747-53. PubMed ID: 15998143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization.
    Pinnamaneni S; Das NG; Das SK
    Pharmazie; 2003 Aug; 58(8):554-8. PubMed ID: 12967032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.
    Liang L; Chen F; Wang X; Jin Q; Decker EA; McClements DJ
    J Agric Food Chem; 2017 Jun; 65(23):4755-4765. PubMed ID: 28534401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of droplet flocculation in hexadecane oil-in-water emulsions stabilized by beta-lactoglobulin at pH 3 and 7.
    Kim HJ; Decker EA; McClements DJ
    Langmuir; 2004 Jul; 20(14):5753-8. PubMed ID: 16459589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids.
    Komaiko J; Sastrosubroto A; McClements DJ
    J Agric Food Chem; 2015 Nov; 63(45):10078-88. PubMed ID: 26528859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of environmental stresses on stability of O/W emulsions containing cationic droplets stabilized by SDS-fish gelatin membranes.
    Surh J; Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2005 May; 53(10):4236-44. PubMed ID: 15884866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles.
    O'Shea PS; Feuerstein-Thelen S; Azzi A
    Biochem J; 1984 Jun; 220(3):795-801. PubMed ID: 6087795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the binding and endocytosis of concanavalin A by guinea pig keratinocytes: reversible antagonistic effects of cholesterol and phospholipid-liposomes.
    Callaghan TM; Metezeau P; Gachelin H; Redziniak G; Milner Y; Goldberg ME
    J Invest Dermatol; 1990 Jan; 94(1):58-64. PubMed ID: 2295838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials.
    Terjung N; Löffler M; Gibis M; Hinrichs J; Weiss J
    Food Funct; 2012 Mar; 3(3):290-301. PubMed ID: 22183117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of low-molecular-weight emulsifiers in O/W-emulsions on microviscosity of non-solidified oil in fat globules and the mobility of emulsifiers at the globule surfaces.
    Munk MB; Erichsen HR; Andersen ML
    J Colloid Interface Sci; 2014 Apr; 419():134-41. PubMed ID: 24491340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial pressure and phospholipid density at emulsion droplet interface using fluorescence microscopy.
    Delacotte J; Gourier C; Pincet F
    Colloids Surf B Biointerfaces; 2014 May; 117():545-8. PubMed ID: 24373642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.