BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 1520273)

  • 1. Molecular mechanism of uncompetitive inhibition of human placental and germ-cell alkaline phosphatase.
    Hoylaerts MF; Manes T; Millán JL
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):23-30. PubMed ID: 1520273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis and epitope-mapped monoclonal antibodies define a catalytically important conformational difference between human placental and germ cell alkaline phosphatase.
    Hoylaerts MF; Millán JL
    Eur J Biochem; 1991 Dec; 202(2):605-16. PubMed ID: 1722150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of a single amino acid converts germ cell alkaline phosphatase to placental alkaline phosphatase.
    Watanabe T; Wada N; Kim EE; Wyckoff HW; Chou JY
    J Biol Chem; 1991 Nov; 266(31):21174-8. PubMed ID: 1939159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gly429 is the major determinant of uncompetitive inhibition of human germ cell alkaline phosphatase by L-leucine.
    Hummer C; Millán JL
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):91-5. PubMed ID: 2001256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the active site of the placental isozyme of alkaline phosphatase by phage-displayed scFv antibodies selected by a specific uncompetitive inhibitor.
    Saini D; Kala M; Jain V; Sinha S
    BMC Biotechnol; 2005 Dec; 5():33. PubMed ID: 16372914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional analysis of human germ cell alkaline phosphatase by site-specific mutagenesis.
    Watanabe T; Wada N; Chou JY
    Biochemistry; 1992 Mar; 31(12):3051-8. PubMed ID: 1554693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian alkaline phosphatases are allosteric enzymes.
    Hoylaerts MF; Manes T; Millán JL
    J Biol Chem; 1997 Sep; 272(36):22781-7. PubMed ID: 9278439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function assignment to conserved residues in mammalian alkaline phosphatases.
    Kozlenkov A; Manes T; Hoylaerts MF; Millán JL
    J Biol Chem; 2002 Jun; 277(25):22992-9. PubMed ID: 11937510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allelic amino acid substitutions affect the conformation and immunoreactivity of germ-cell alkaline phosphatase phenotypes.
    Hoylaerts MF; Manes T; Millán JL
    Clin Chem; 1992 Dec; 38(12):2493-500. PubMed ID: 1281052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymorphism of alkaline phosphatase isozyme genes: linkage disequilibria between placental and germ-cell alkaline phosphatase alleles.
    Beckman G; Beckman L; Sikström C; Millán JL
    Am J Hum Genet; 1992 Nov; 51(5):1066-70. PubMed ID: 1357964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of human placental-type alkaline phosphatase variants by peptides containing L-leucine.
    Doellgast GJ; Fishman WH
    Clin Chim Acta; 1977 Mar; 75(3):449-54. PubMed ID: 856496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression and butyrate response of human alkaline phosphatase genes are mediated by upstream DNA elements.
    Park C; Chamberlin ME; Pan CJ; Chou JY
    Biochemistry; 1996 Jul; 35(30):9807-14. PubMed ID: 8703954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the S2 subsite specificity of human cathepsin S to a cathepsin L- and cathepsin B-like specificity.
    Brömme D; Bonneau PR; Lachance P; Storer AC
    J Biol Chem; 1994 Dec; 269(48):30238-42. PubMed ID: 7982933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-specific mutations in the COOH-terminus of placental alkaline phosphatase: a single amino acid change converts a phosphatidylinositol-glycan-anchored protein to a secreted protein.
    Lowe ME
    J Cell Biol; 1992 Feb; 116(3):799-807. PubMed ID: 1730777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene.
    Millán JL; Manes T
    Proc Natl Acad Sci U S A; 1988 May; 85(9):3024-8. PubMed ID: 2834730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive solid-phase immunoenzymometric assay for placental and placental-like alkaline phosphatases with a monoclonal antibody and monodisperse polymer particles.
    Millán JL; Nustad K; Nørgaard-Pedersen B
    Clin Chem; 1985 Jan; 31(1):54-9. PubMed ID: 3880682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectivity of the cleavage/attachment site of phosphatidylinositol-glycan-anchored membrane proteins determined by site-specific mutagenesis at Asp-484 of placental alkaline phosphatase.
    Micanovic R; Gerber LD; Berger J; Kodukula K; Udenfriend S
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):157-61. PubMed ID: 2153284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifications in a flexible surface loop modulate the isozyme-specific properties of mammalian alkaline phosphatases.
    Bossi M; Hoylaerts MF; Millán JL
    J Biol Chem; 1993 Dec; 268(34):25409-16. PubMed ID: 8244974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, genomic DNA typing, and kinetic characterization of the D allozyme of placental alkaline phosphatase (PLAP/ALPP).
    Wennberg C; Kozlenkov A; Di Mauro S; Fröhlander N; Beckman L; Hoylaerts MF; Millán JL
    Hum Mutat; 2002 Mar; 19(3):258-67. PubMed ID: 11857742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of alkaline phosphatase from human placenta at 1.8 A resolution. Implication for a substrate specificity.
    Le Du MH; Stigbrand T; Taussig MJ; Menez A; Stura EA
    J Biol Chem; 2001 Mar; 276(12):9158-65. PubMed ID: 11124260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.