BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1520293)

  • 1. An apparently allosteric effect involving N2O with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Jones AM; Hollocher TC
    Biochem Biophys Res Commun; 1992 Aug; 187(1):135-9. PubMed ID: 1520293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A diffusion-controlled step in the catalytic cycle of nitrous oxide reductase from Wolinella succinogenes.
    Mukonoweshuro C; Hollocher TC
    Arch Biochem Biophys; 1993 Oct; 306(1):195-9. PubMed ID: 8215403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.
    Luckmann M; Mania D; Kern M; Bakken LR; Frostegård Å; Simon J
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1749-1759. PubMed ID: 24781903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Teraguchi S; Hollocher TC
    J Biol Chem; 1989 Feb; 264(4):1972-9. PubMed ID: 2536696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of dichloromethane (methylene chloride) with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Hollocher TC
    World J Microbiol Biotechnol; 1993 Jul; 9(4):479-82. PubMed ID: 24420116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization.
    Kristjansson JK; Hollocher TC
    J Biol Chem; 1980 Jan; 255(2):704-7. PubMed ID: 7356639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometric study.
    Costa C; Macedo A; Moura I; Moura JJ; Le Gall J; Berlier Y; Liu MY; Payne WJ
    FEBS Lett; 1990 Dec; 276(1-2):67-70. PubMed ID: 2265715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance observations on the cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Zhang CS; Hollocher TC; Kolodziej AF; Orme-Johnson WH
    J Biol Chem; 1991 Feb; 266(4):2199-202. PubMed ID: 1846617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex.
    Hein S; Witt S; Simon J
    Environ Microbiol; 2017 Dec; 19(12):4913-4925. PubMed ID: 28925551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea.
    Zumft WG; Kroneck PM
    Adv Microb Physiol; 2007; 52():107-227. PubMed ID: 17027372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes.
    Kern M; Simon J
    Environ Microbiol; 2016 Sep; 18(9):2899-912. PubMed ID: 26395430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of nitrous oxide reductase from Pseudomonas aeruginosa strain P2.
    SooHoo CK; Hollocher TC
    J Biol Chem; 1991 Feb; 266(4):2203-9. PubMed ID: 1899237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions.
    Hein S; Simon J
    Adv Microb Physiol; 2019; 75():137-175. PubMed ID: 31655736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductively activated nitrous oxide reductase reacts directly with substrate.
    Chan JM; Bollinger JA; Grewell CL; Dooley DM
    J Am Chem Soc; 2004 Mar; 126(10):3030-1. PubMed ID: 15012115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TsdC, a unique lipoprotein from Wolinella succinogenes that enhances tetrathionate reductase activity of TsdA.
    Kurth JM; Schuster A; Seel W; Herresthal S; Simon J; Dahl C
    FEMS Microbiol Lett; 2017 Feb; 364(3):. PubMed ID: 28062520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes.
    Lorenzen J; Steinwachs S; Unden G
    Arch Microbiol; 1994; 162(4):277-81. PubMed ID: 7802544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N2O reduction by the mu4-sulfide-bridged tetranuclear CuZ cluster active site.
    Chen P; Gorelsky SI; Ghosh S; Solomon EI
    Angew Chem Int Ed Engl; 2004 Aug; 43(32):4132-40. PubMed ID: 15307074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N2O.
    Yang H; Gandhi H; Ostrom NE; Hegg EL
    Environ Sci Technol; 2014 Sep; 48(18):10707-15. PubMed ID: 25121461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase.
    Simon J; Einsle O; Kroneck PM; Zumft WG
    FEBS Lett; 2004 Jul; 569(1-3):7-12. PubMed ID: 15225600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria.
    Kern M; Simon J
    Biochim Biophys Acta; 2009 Jun; 1787(6):646-56. PubMed ID: 19171117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.