These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 15203180)
1. Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced rat fetal brain lesions. Yamauchi H; Katayama K; Ueno M; Uetsuka K; Nakayama H; Doi K Neurotoxicol Teratol; 2004; 26(4):579-86. PubMed ID: 15203180 [TBL] [Abstract][Full Text] [Related]
2. Involvement of p53 in 1-beta-D-arabinofuranosylcytosine-induced trophoblastic cell apoptosis and impaired proliferation in rat placenta. Yamauchi H; Katayama K; Ueno M; Uetsuka K; Nakayama H; Doi K Biol Reprod; 2004 Jun; 70(6):1762-7. PubMed ID: 14766721 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of hydroxyurea(HU)-induced apoptosis in the mouse fetal brain. Woo GH; Bak EJ; Nakayama H; Doi K Neurotoxicol Teratol; 2006; 28(1):125-34. PubMed ID: 16356682 [TBL] [Abstract][Full Text] [Related]
4. Hydroxyurea (HU)-induced apoptosis in the mouse fetal lung. Woo GH; Bak EJ; Nakayama H; Doi K Exp Mol Pathol; 2005 Aug; 79(1):59-67. PubMed ID: 16005713 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle and cell death regulation of neural progenitor cells in the 5-azacytidine (5AzC)-treated developing fetal brain. Ueno M; Katayama K; Yamauchi H; Nakayama H; Doi K Exp Neurol; 2006 Mar; 198(1):154-66. PubMed ID: 16427046 [TBL] [Abstract][Full Text] [Related]
6. 6-Mercaptopurine (6-MP) induces cell cycle arrest and apoptosis of neural progenitor cells in the developing fetal rat brain. Kanemitsu H; Yamauchi H; Komatsu M; Yamamoto S; Okazaki S; Uchida K; Nakayama H Neurotoxicol Teratol; 2009; 31(2):104-9. PubMed ID: 18951973 [TBL] [Abstract][Full Text] [Related]
7. Repair process of fetal brain after 5-azacytidine-induced damage. Ueno M; Katayama K; Yamauchi H; Yasoshima A; Nakayama H; Doi K Eur J Neurosci; 2006 Nov; 24(10):2758-68. PubMed ID: 17156202 [TBL] [Abstract][Full Text] [Related]
8. Etoposide induces apoptosis and cell cycle arrest of neuroepithelial cells in a p53-related manner. Nam C; Yamauchi H; Nakayama H; Doi K Neurotoxicol Teratol; 2006; 28(6):664-72. PubMed ID: 17095187 [TBL] [Abstract][Full Text] [Related]
9. Low p21Waf1/Cip1 protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis. Spierings DC; de Vries EG; Stel AJ; te Rietstap N; Vellenga E; de Jong S Oncogene; 2004 Jun; 23(28):4862-72. PubMed ID: 15122333 [TBL] [Abstract][Full Text] [Related]
10. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. Yang H; Chung DH; Kim YB; Choi YH; Moon Y Toxicology; 2008 Jan; 243(1-2):145-54. PubMed ID: 18006205 [TBL] [Abstract][Full Text] [Related]
11. Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL- and p53-independent manner. Choi YJ; Ok DW; Kwon DN; Chung JI; Kim HC; Yeo SM; Kim T; Seo HG; Kim JH FEBS Lett; 2004 Sep; 575(1-3):41-51. PubMed ID: 15388331 [TBL] [Abstract][Full Text] [Related]
12. RNA interference-mediated silencing of the p53 tumor-suppressor protein drastically increases apoptosis after inhibition of endogenous fatty acid metabolism in breast cancer cells. Menendez JA; Lupu R Int J Mol Med; 2005 Jan; 15(1):33-40. PubMed ID: 15583825 [TBL] [Abstract][Full Text] [Related]
13. The proliferative inhibition and apoptotic mechanism of Saikosaponin D in human non-small cell lung cancer A549 cells. Hsu YL; Kuo PL; Lin CC Life Sci; 2004 Jul; 75(10):1231-42. PubMed ID: 15219811 [TBL] [Abstract][Full Text] [Related]
14. Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. Choi EJ; Kim GH J Nutr Biochem; 2009 Apr; 20(4):285-90. PubMed ID: 18656338 [TBL] [Abstract][Full Text] [Related]
15. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Kim H; Kokkotou E; Na X; Rhee SH; Moyer MP; Pothoulakis C; Lamont JT Gastroenterology; 2005 Dec; 129(6):1875-88. PubMed ID: 16344056 [TBL] [Abstract][Full Text] [Related]
16. The p53-independent nuclear translocation of cyclin G1 in degenerating neurons by ischemic and traumatic insults. Maeda M; Ampo K; Kiryu-Seo S; Konishi H; Ohba N; Kadono C; Kiyama H Exp Neurol; 2005 Jun; 193(2):350-60. PubMed ID: 15869937 [TBL] [Abstract][Full Text] [Related]
17. Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. Hsu YL; Kuo PL; Lin CC Life Sci; 2005 Jun; 77(3):279-92. PubMed ID: 15878356 [TBL] [Abstract][Full Text] [Related]
18. Essential role of p53 in trophoblastic apoptosis induced in the developing rodent placenta by treatment with a DNA-damaging agent. Yamauchi H; Katayama K; Ueno M; He XJ; Mikami T; Uetsuka K; Doi K; Nakayama H Apoptosis; 2007 Oct; 12(10):1743-54. PubMed ID: 17594519 [TBL] [Abstract][Full Text] [Related]
19. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Fornari F; Gramantieri L; Giovannini C; Veronese A; Ferracin M; Sabbioni S; Calin GA; Grazi GL; Croce CM; Tavolari S; Chieco P; Negrini M; Bolondi L Cancer Res; 2009 Jul; 69(14):5761-7. PubMed ID: 19584283 [TBL] [Abstract][Full Text] [Related]
20. Loss of cyclin g1 expression in human uterine leiomyoma cells induces apoptosis. Kwon SH; Park JC; Ramachandran S; Cha SD; Kwon KY; Park JK; Park JW; Bae I; Cho CH Reprod Sci; 2008 Apr; 15(4):400-10. PubMed ID: 18497347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]