These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15204057)

  • 1. Spinal cord injury: reversing the incorrect cortical maps by inductive lability procedure.
    Krishnan RV
    Int J Neurosci; 2004 Jun; 114(6):633-53. PubMed ID: 15204057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relearning of locomotion in injured spinal cord: new directions for rehabilitation programs.
    Krishnan RV
    Int J Neurosci; 2003 Oct; 113(10):1333-51. PubMed ID: 14534034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Botulinum toxin: from spasticity reliever to a neuromotor re-learning tool.
    Krishnan RV
    Int J Neurosci; 2005 Oct; 115(10):1451-67. PubMed ID: 16162450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal and supraspinal plasticity after incomplete spinal cord injury: correlations between functional magnetic resonance imaging and engaged locomotor networks.
    Dobkin BH
    Prog Brain Res; 2000; 128():99-111. PubMed ID: 11105672
    [No Abstract]   [Full Text] [Related]  

  • 5. Sensorimotor cortical plasticity during recovery following spinal cord injury: a longitudinal fMRI study.
    Jurkiewicz MT; Mikulis DJ; McIlroy WE; Fehlings MG; Verrier MC
    Neurorehabil Neural Repair; 2007; 21(6):527-38. PubMed ID: 17507643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions.
    Knikou M
    Clin Neurophysiol; 2010 Oct; 121(10):1655-68. PubMed ID: 20427232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 16--spinal plasticity in the recovery of locomotion.
    Rossignol S; Frigon A; Barrière G; Martinez M; Barthélemy D; Bouyer L; Bélanger M; Provencher J; Chau C; Brustein E; Barbeau H; Giroux N; Marcoux J; Langlet C; Alluin O
    Prog Brain Res; 2011; 188():229-41. PubMed ID: 21333814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed neural networks for controlling human locomotion: lessons from normal and SCI subjects.
    Ivanenko YP; Poppele RE; Lacquaniti F
    Brain Res Bull; 2009 Jan; 78(1):13-21. PubMed ID: 19070781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of spinal centers in spinal cord injury patients: new concepts for gait evaluation and training.
    Scivoletto G; Ivanenko Y; Morganti B; Grasso R; Zago M; Lacquaniti F; Ditunno J; Molinari M
    Neurorehabil Neural Repair; 2007; 21(4):358-65. PubMed ID: 17353461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the mechanisms underlying cortical plasticity following spinal cord injury.
    Vucic S
    Clin Neurophysiol; 2011 Jul; 122(7):1278-9. PubMed ID: 21295517
    [No Abstract]   [Full Text] [Related]  

  • 11. Spinal cord injury: there is nothing permanent except change (Heraclitus, 540-480 BC).
    Nistri A; Saccavini M
    Brain Res Bull; 2009 Jan; 78(1):2-3. PubMed ID: 18929626
    [No Abstract]   [Full Text] [Related]  

  • 12. Spinal cord injury: inductive lability can enhance and hasten recovery.
    Krishnan RV
    Int J Neurosci; 2003 Jun; 113(6):761-75. PubMed ID: 12775341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection.
    Gulino R; Dimartino M; Casabona A; Lombardo SA; Perciavalle V
    Neurosci Res; 2007 Jan; 57(1):148-56. PubMed ID: 17083989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity properties of CPG circuits in humans: impact on gait recovery.
    Molinari M
    Brain Res Bull; 2009 Jan; 78(1):22-5. PubMed ID: 19070782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for recovery of motor function following cortical damage.
    Nudo RJ
    Curr Opin Neurobiol; 2006 Dec; 16(6):638-44. PubMed ID: 17084614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of cortical maps: multiple triggers for adaptive reorganization following brain damage and spinal cord injury.
    Xerri C
    Neuroscientist; 2012 Apr; 18(2):133-48. PubMed ID: 21636850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of spinal cord injury on the neural regulation of respiratory function.
    Zimmer MB; Nantwi K; Goshgarian HG
    Exp Neurol; 2008 Feb; 209(2):399-406. PubMed ID: 17603041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury.
    Winchester P; McColl R; Querry R; Foreman N; Mosby J; Tansey K; Williamson J
    Neurorehabil Neural Repair; 2005 Dec; 19(4):313-24. PubMed ID: 16263963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circulating insulin-like growth factor I and functional recovery from spinal cord injury under enriched housing conditions.
    Koopmans GC; Brans M; Gómez-Pinilla F; Duis S; Gispen WH; Torres-Aleman I; Joosten EA; Hamers FP
    Eur J Neurosci; 2006 Feb; 23(4):1035-46. PubMed ID: 16519668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.