These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 15204701)
1. Use of 19F-nuclear magnetic resonance and gas chromatography-electron capture detection in the quantitative analysis of fluorine-containing metabolites in urine of sevoflurane-anaesthetized patients. Orhan H; Commandeur JN; Sahin G; Aypar U; Sahin A; Vermeulen NP Xenobiotica; 2004 Mar; 34(3):301-16. PubMed ID: 15204701 [TBL] [Abstract][Full Text] [Related]
2. Cysteine conjugate beta-lyase-dependent metabolism of compound A (2-[fluoromethoxy]-1,1,3,3,3-pentafluoro-1-propene) in human subjects anesthetized with sevoflurane and in rats given compound A. Iyer RA; Frink EJ; Ebert TJ; Anders MW Anesthesiology; 1998 Mar; 88(3):611-8. PubMed ID: 9523802 [TBL] [Abstract][Full Text] [Related]
3. Compound A uptake and metabolism to mercapturic acids and 3,3,3-trifluoro-2-fluoromethoxypropanoic acid during low-flow sevoflurane anesthesia: biomarkers for exposure, risk assessment, and interspecies comparison. Kharasch ED; Jubert C Anesthesiology; 1999 Nov; 91(5):1267-78. PubMed ID: 10551576 [TBL] [Abstract][Full Text] [Related]
4. Dose-dependent metabolism of fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), an anesthetic degradation product, to mercapturic acids and 3,3,3-trifluoro-2-(fluoromethoxy)propanoic acid in rats. Kharasch ED; Jubert C; Spracklin DK; Hoffman GM Toxicol Appl Pharmacol; 1999 Oct; 160(1):49-59. PubMed ID: 10502502 [TBL] [Abstract][Full Text] [Related]
5. [Biological monitoring of occupational exposure to sevoflurane]. Imbriani M; Zadra P; Negri S; Alessio A; Maestri L; Ghittori S Med Lav; 2001; 92(3):173-80. PubMed ID: 11515150 [TBL] [Abstract][Full Text] [Related]
6. Evidence for metabolism of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), a sevoflurane degradation product, by cysteine conjugate beta-lyase. Spracklin DK; Kharasch ED Chem Res Toxicol; 1996 Jun; 9(4):696-702. PubMed ID: 8831812 [TBL] [Abstract][Full Text] [Related]
7. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A). Iyer RA; Anders MW Chem Res Toxicol; 1997 Jul; 10(7):811-9. PubMed ID: 9250416 [TBL] [Abstract][Full Text] [Related]
8. A straightforward method for determination of the sevoflurane metabolite hexafluoroisopropanol in urinary occupational medical samples by headspace-gas chromatography mass spectrometry. Selke S; Winter M; Finger S; Roeher K; Neppert J; Harth V J Chromatogr B Analyt Technol Biomed Life Sci; 2023 Dec; 1231():123923. PubMed ID: 37984163 [TBL] [Abstract][Full Text] [Related]
9. Biomonitoring occupational sevoflurane exposure at low levels by urinary sevoflurane and hexafluoroisopropanol. Scapellato ML; Carrieri M; MaccĂ I; Salamon F; Trevisan A; Manno M; Bartolucci GB Toxicol Lett; 2014 Dec; 231(2):154-60. PubMed ID: 25455444 [TBL] [Abstract][Full Text] [Related]
10. Role of cytochrome P4503A in cysteine S-conjugates sulfoxidation and the nephrotoxicity of the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A) in rats. Sheffels P; Schroeder JL; Altuntas TG; Liggitt HD; Kharasch ED Chem Res Toxicol; 2004 Sep; 17(9):1177-89. PubMed ID: 15377151 [TBL] [Abstract][Full Text] [Related]
11. Fate and toxicity of 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A)-derived mercapturates in male, Fischer 344 rats. Uttamsingh V; Iyer RA; Baggs RB; Anders MW Anesthesiology; 1998 Nov; 89(5):1174-83. PubMed ID: 9822006 [TBL] [Abstract][Full Text] [Related]
12. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Xu Y; Tang P; Zhang W; Firestone L; Winter PM Anesthesiology; 1995 Oct; 83(4):766-74. PubMed ID: 7574056 [TBL] [Abstract][Full Text] [Related]
13. Urinary sevoflurane and hexafluoro-isopropanol as biomarkers of low-level occupational exposure to sevoflurane. Accorsi A; Morrone B; Domenichini I; Valenti S; Raffi GB; Violante FS Int Arch Occup Environ Health; 2005 Jun; 78(5):369-78. PubMed ID: 15864632 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous determination of unmodified sevoflurane and of its metabolite hexafluoroisopropanol in urine by headspace sorptive extraction-thermal desorption-capillary gas chromatography-mass spectrometry. Accorsi A; Morrone B; Benzo M; Gandini C; Raffi GB; Violante FS J Chromatogr A; 2005 Apr; 1071(1-2):131-4. PubMed ID: 15865184 [TBL] [Abstract][Full Text] [Related]
15. Determination of hexafluoroisopropanol, a sevoflurane urinary metabolite, by 9-fluorenylmethyl chloroformate derivatization. Buratti M; Valla C; Xaiz D; Brambilla G; Colombi A J Chromatogr B Analyt Technol Biomed Life Sci; 2002 Sep; 776(2):237-43. PubMed ID: 12138006 [TBL] [Abstract][Full Text] [Related]
16. Clinical sevoflurane metabolism and disposition. I. Sevoflurane and metabolite pharmacokinetics. Kharasch ED; Karol MD; Lanni C; Sawchuk R Anesthesiology; 1995 Jun; 82(6):1369-78. PubMed ID: 7793651 [TBL] [Abstract][Full Text] [Related]
17. Effects of low-flow sevoflurane anesthesia on renal function: comparison with high-flow sevoflurane anesthesia and low-flow isoflurane anesthesia. Bito H; Ikeuchi Y; Ikeda K Anesthesiology; 1997 Jun; 86(6):1231-7. PubMed ID: 9197291 [TBL] [Abstract][Full Text] [Related]
18. Urinary excretion of hexafluoroisopropanol glucuronide and fluoride in patients after sevoflurane anaesthesia. Ni J; Sato N; Fujii K; Yuge O J Pharm Pharmacol; 1993 Jan; 45(1):67-9. PubMed ID: 8094451 [TBL] [Abstract][Full Text] [Related]
19. Clinical sevoflurane metabolism and disposition. II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Kharasch ED; Armstrong AS; Gunn K; Artru A; Cox K; Karol MD Anesthesiology; 1995 Jun; 82(6):1379-88. PubMed ID: 7793652 [TBL] [Abstract][Full Text] [Related]
20. Alternate strategies to obtain mass balance without the use of radiolabeled compounds: application of quantitative fluorine (19F) nuclear magnetic resonance (NMR) spectroscopy in metabolism studies. Mutlib A; Espina R; Atherton J; Wang J; Talaat R; Scatina J; Chandrasekaran A Chem Res Toxicol; 2012 Mar; 25(3):572-83. PubMed ID: 22292524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]