BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 15204872)

  • 1. Adaptation and evaluation of a personal electronic nose for selective multivapor analysis.
    Hsieh MD; Zellers ET
    J Occup Environ Hyg; 2004 Mar; 1(3):149-60. PubMed ID: 15204872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array.
    Groves WA; Zellers ET
    Ann Occup Hyg; 2001 Nov; 45(8):609-23. PubMed ID: 11718657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal monitoring instrument for the selective measurement of multiple organic vapors.
    Park J; Zhang GZ; Zellers ET
    AIHAJ; 2000; 61(2):192-204. PubMed ID: 10782191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Limits of recognition for simple vapor mixtures determined with a microsensor array.
    Hsieh MD; Zellers ET
    Anal Chem; 2004 Apr; 76(7):1885-95. PubMed ID: 15053648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of multitransducer arrays for the determination of organic vapor mixtures.
    Jin C; Kurzawski P; Hierlemann A; Zellers ET
    Anal Chem; 2008 Jan; 80(1):227-36. PubMed ID: 18047297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits of recognition for binary and ternary vapor mixtures determined with multitransducer arrays.
    Jin C; Zellers ET
    Anal Chem; 2008 Oct; 80(19):7283-93. PubMed ID: 18771277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface acoustic wave (SAW) microsensor array for measuring VOCs in drinking water.
    Groves WA; Grey AB; O'Shaughnessy PT
    J Environ Monit; 2006 Sep; 8(9):932-41. PubMed ID: 16951753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and humidity compensation in the determination of solvent vapors with a microsensor system.
    Park J; Zellers ET
    Analyst; 2000 Oct; 125(10):1775-82. PubMed ID: 11070547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laboratory and field evaluation of a SAW microsensor array for measuring perchloroethylene in breath.
    Groves WA; Achutan C
    J Occup Environ Hyg; 2004 Dec; 1(12):779-88. PubMed ID: 15742707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prototype instrument employing a microsensor array for the analysis of organic vapors in exhaled breath.
    Groves WA; Zellers ET
    Am Ind Hyg Assoc J; 1996 Dec; 57(12):1103-8. PubMed ID: 8976585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chamber evaluation of a portable GC with tunable retention and microsensor-array detection for indoor air quality monitoring.
    Lu CJ; Jin C; Zellers ET
    J Environ Monit; 2006 Feb; 8(2):270-8. PubMed ID: 16470259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays.
    Zellers ET; Batterman SA; Han M; Patrash SJ
    Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air.
    Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M
    Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the applicability of fourier transform infrared (FTIR) spectroscopy for quantitation of the components of airborne solvent vapors in air.
    Ying LS; Levine SP
    Am Ind Hyg Assoc J; 1989 Jul; 50(7):360-5. PubMed ID: 2756867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of organic-vapor respirator cartridge efficiency for hexamethylene diisocyanate vapor in the presence of organic solvents.
    Dharmarajan V; Lingg RD; Myer HE
    Appl Occup Environ Hyg; 2001 Mar; 16(3):397-404. PubMed ID: 11297054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of organic-vapor respirator cartridge efficiency for toluene diisocyanate vapor in the presence of methylenechloride or acetone solvent.
    Dharmarajan V; Cummings B; Lingg RD
    Appl Occup Environ Hyg; 2003 Aug; 18(8):620-8. PubMed ID: 12851011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the performance and response of the bacharach TLV sniffer and H-Nu photoionization gas analyzer to common hydrocarbon solvents.
    Chelton CF; Zakraysek N; Lautner GM; Confer RG
    Am Ind Hyg Assoc J; 1983 Oct; 44(10):710-5. PubMed ID: 6650391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling aggregate exposures to glycol ethers from use of commercial floor products.
    Koontz M; Price P; Hamilton J; Daggett D; Sielken R; Bretzlaff R; Tyler T
    Int J Toxicol; 2006; 25(2):95-107. PubMed ID: 16597548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of temperature and pressure on airborne exposure concentrations when performing compliance evaluations using ACGIH TLVs and OSHA PELs.
    Stephenson DJ; Lillquist DR
    Appl Occup Environ Hyg; 2001 Apr; 16(4):482-6. PubMed ID: 11318391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.