These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 15204979)

  • 1. Electron microscopy of wet tissues: a case study in renal pathology.
    Nyska A; Cummings CA; Vainshtein A; Nadler J; Ezov N; Grunfeld Y; Gileadi O; Behar V
    Toxicol Pathol; 2004; 32(3):357-63. PubMed ID: 15204979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electron microscopy of cells and tissues under fully hydrated conditions.
    Thiberge S; Nechushtan A; Sprinzak D; Gileadi O; Behar V; Zik O; Chowers Y; Michaeli S; Schlessinger J; Moses E
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3346-51. PubMed ID: 14988502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for "Wet" SEM.
    Barshack I; Kopolovic J; Chowers Y; Gileadi O; Vainshtein A; Zik O; Behar V
    Ultrastruct Pathol; 2004; 28(1):29-31. PubMed ID: 14967596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of low-vacuum scanning electron microscopy for renal biopsy specimens.
    Miyazaki H; Uozaki H; Tojo A; Hirashima S; Inaga S; Sakuma K; Morishita Y; Fukayama M
    Pathol Res Pract; 2012 Sep; 208(9):503-9. PubMed ID: 22795691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conventional and high resolution scanning electron microscopy of biological sectioned material.
    Scala C; Cenacchi G; Preda P; Vici M; Apkarian RP; Pasquinelli G
    Scanning Microsc; 1991 Mar; 5(1):135-44; discussion 144-5. PubMed ID: 2052919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complementary role of scanning electron microscopy in renal pathological diagnosis.
    Jones DB
    Scan Electron Microsc; 1983; (Pt 1):323-32. PubMed ID: 6415808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of environmental scanning electron microscopy for imaging wet and insulating materials.
    Donald AM
    Nat Mater; 2003 Aug; 2(8):511-6. PubMed ID: 12894259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for viewing heavy metal stained and embedded biological tissue by field emission scanning electron microscopy.
    Richards RG; ap Gwynn I
    Scanning Microsc; 1996; 10(1):111-8; discussion 118-9. PubMed ID: 9813601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive staining of biological specimens for scanning electron microscopy with special reference to ligand-mediated osmium impregnation.
    Murakami T; Iida N; Taguchi T; Ohtani O; Kikuta A; Ohtsuka A; Itoshima T
    Scan Electron Microsc; 1983; (Pt 1):235-46. PubMed ID: 6195728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach for studying semithin sections of human pathological material: intermicroscopic correlation between light microscopy and scanning electron microscopy.
    Pasquinelli G; Scala C; Borsetti GP; Martegani F; Laschi R
    Scan Electron Microsc; 1985; (Pt 3):1133-42. PubMed ID: 2416037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chapter 14: Electron microscopy of hydrated samples.
    Timp W; Matsudaira P
    Methods Cell Biol; 2008; 89():391-407. PubMed ID: 19118683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy.
    Ogura T
    Biochem Biophys Res Commun; 2010 Jan; 391(1):198-202. PubMed ID: 19900411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlative light microscopy, scanning electron microscopy, and transmission electron microscopy of osmium-macerated biological tissues.
    Scala C; Cenacchi G; Apkarian RP; Preda P; Pasquinelli G
    J Electron Microsc (Tokyo); 1990; 39(6):508-10. PubMed ID: 2094756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning electron microscopy of human and rhesus monkey kidneys.
    Andrews PM
    Lab Invest; 1975 May; 32(5):510-8. PubMed ID: 1127875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Histological study of early postmortem changes in various organs: comparison of the paraffin embedding method and the epoxy resin embedding method].
    Tomita Y; Nihira M; Ohno Y; Sato S
    Nihon Hoigaku Zasshi; 1999 Jun; 53(2):207-17. PubMed ID: 10536439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Working at higher magnifications in scanning electron microscopy with secondary and backscattered electrons on metal coated biological specimens and imaging macromolecular cell membrane structures.
    Peters KR
    Scan Electron Microsc; 1985; (Pt 4):1519-44. PubMed ID: 4095499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between light and electron microscopy in canine and feline renal pathology: a preliminary study.
    Scaglione FE; Catalano D; Bestonso R; Brovida C; D'Angelo A; Zanatta R; Cornaglia S; Cornaglia E; Capucchio MT
    J Microsc; 2008 Dec; 232(3):387-94. PubMed ID: 19094015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of zymogen granules in fully wet cells: evidence for restricted mechanism of granule growth.
    Hammel I; Anaby D
    Microsc Res Tech; 2007 Sep; 70(9):790-5. PubMed ID: 17557275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam voltage effects in the study of embedded biological materials by secondary electron detectors.
    Scala C; Pasquinelli G; Preda P; Laschi R
    Scan Electron Microsc; 1986; (Pt 3):987-98. PubMed ID: 3541162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic applications of scanning electron microscopy and microanalysis in pathology.
    Abraham JL
    Isr J Med Sci; 1979 Aug; 15(8):716-23. PubMed ID: 478830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.