These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15205173)

  • 1. Pathophysiological plasma ET-1 levels antagonize beta-adrenergic dilation of coronary resistance vessels in conscious dogs.
    Okajima M; Parent R; Thorin E; Lavallée M
    Am J Physiol Heart Circ Physiol; 2004 Oct; 287(4):H1476-83. PubMed ID: 15205173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beta 2-adrenergic dilation of resistance coronary vessels involves KATP channels and nitric oxide in conscious dogs.
    Ming Z; Parent R; Lavallée M
    Circulation; 1997 Mar; 95(6):1568-76. PubMed ID: 9118527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide formation contributes to beta-adrenergic dilation of resistance coronary vessels in conscious dogs.
    Parent R; al-Obaidi M; Lavallée M
    Circ Res; 1993 Aug; 73(2):241-51. PubMed ID: 8392445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelin-dependent tone limits acetylcholine-induced dilation of resistance coronary vessels after blockade of NO formation in conscious dogs.
    Ming Z; Parent R; Thorin E; Lavallée M
    Hypertension; 1998 Nov; 32(5):844-8. PubMed ID: 9822442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired dilation of coronary arterioles during increases in myocardial O(2) consumption with hyperglycemia.
    Ammar RF; Gutterman DD; Brooks LA; Dellsperger KC
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E868-74. PubMed ID: 11001770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta 2-adrenergic dilation of conductance coronary arteries involves flow-dependent NO formation in conscious dogs.
    Hamdad N; Ming Z; Parent R; Lavallée M
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H1926-37. PubMed ID: 8945911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nitric oxide on vascular, metabolic, and contractile responses to dobutamine in in situ canine hearts.
    Crystal GJ; Zhou X; Gurevicius J; Ramez Salem M
    Anesth Analg; 1998 Nov; 87(5):994-1001. PubMed ID: 9806671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced contribution of NO to exercise-induced coronary responses after alpha-adrenergic receptor blockade.
    Takamura M; Parent R; Lavallée M
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H508-15. PubMed ID: 11788398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simvastatin upregulates coronary vascular endothelial nitric oxide production in conscious dogs.
    Mital S; Zhang X; Zhao G; Bernstein RD; Smith CJ; Fulton DL; Sessa WC; Liao JK; Hintze TH
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2649-57. PubMed ID: 11087217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelin-dependent effects limit flow-induced dilation of conductance coronary vessels after blockade of nitric oxide formation in conscious dogs.
    Parent R; Lavallée M
    Cardiovasc Res; 2000 Jan; 45(2):470-7. PubMed ID: 10728368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting effects of blockade of nitric oxide formation on resistance and conductance coronary vessels in conscious dogs.
    Parent R; Hamdad N; Ming Z; Lavallée M
    Cardiovasc Res; 1996 Apr; 31(4):555-67. PubMed ID: 8689647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glibenclamide prevents coronary vasodilation induced by beta 1-adrenoceptor stimulation in dogs.
    Narishige T; Egashira K; Akatsuka Y; Imamura Y; Takahashi T; Kasuya H; Takeshita A
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H84-92. PubMed ID: 7905717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of K+ATP channel and adenosine receptor blockade during rest and exercise in congestive heart failure.
    Traverse JH; Chen Y; Hou M; Li Y; Bache RJ
    Circ Res; 2007 Jun; 100(11):1643-9. PubMed ID: 17478726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide-independent dilation of conductance coronary arteries to acetylcholine in conscious dogs.
    Ming Z; Parent R; Lavallée M
    Circ Res; 1997 Dec; 81(6):977-87. PubMed ID: 9400378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide formation contributes to beta-adrenergic dilation of epicardial coronary arteries in response to intravenous administration of dobutamine in dogs.
    Yang H; Deng Y; Bi X; Chang Q; Bai J; Pan M; Xiang H; Liu H; Li X; Liu Y; Li C
    J Huazhong Univ Sci Technolog Med Sci; 2004; 24(2):189-91. PubMed ID: 15315177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of dual ET(A)/ET(B)-receptor blockade on coronary responses to treadmill exercise in dogs.
    Takamura M; Parent R; Cernacek P; Lavallée M
    J Appl Physiol (1985); 2000 Nov; 89(5):2041-8. PubMed ID: 11053360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of nitric oxide to dilation of resistance coronary vessels in conscious dogs.
    Parent R; Paré R; Lavallée M
    Am J Physiol; 1992 Jan; 262(1 Pt 2):H10-6. PubMed ID: 1733302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K(ATP)(+) channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation.
    Tune JD; Richmond KN; Gorman MW; Feigl EO
    Am J Physiol Heart Circ Physiol; 2001 Feb; 280(2):H868-75. PubMed ID: 11158988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial modulation of beta-adrenergic dilation of large coronary arteries in conscious dogs.
    Ghaleh B; Béa ML; Dubois-Randé JL; Giudicelli JF; Hittinger L; Berdeaux A
    Circulation; 1995 Nov; 92(9):2627-35. PubMed ID: 7586366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of coronary microvascular responses to metabolic stimulation.
    Embrey RP; Brooks LA; Dellsperger KC
    Cardiovasc Res; 1997 Jul; 35(1):148-57. PubMed ID: 9302359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.