These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 15205419)
1. Altering the substrate specificity of polyhydroxyalkanoate synthase 1 derived from Pseudomonas putida GPo1 by localized semirandom mutagenesis. Sheu DS; Lee CY J Bacteriol; 2004 Jul; 186(13):4177-84. PubMed ID: 15205419 [TBL] [Abstract][Full Text] [Related]
2. Critical residues of class II PHA synthase for expanding the substrate specificity and enhancing the biosynthesis of polyhydroxyalkanoate. Chen YJ; Tsai PC; Hsu CH; Lee CY Enzyme Microb Technol; 2014 Mar; 56():60-6. PubMed ID: 24564904 [TBL] [Abstract][Full Text] [Related]
3. A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates. Chen JY; Song G; Chen GQ Antonie Van Leeuwenhoek; 2006 Jan; 89(1):157-67. PubMed ID: 16496091 [TBL] [Abstract][Full Text] [Related]
4. Sequence of PHA synthase gene from two strains of Rhodospirillum rubrum and in vivo substrate specificity of four PHA synthases across two heterologous expression systems. Clemente T; Shah D; Tran M; Stark D; Padgette S; Dennis D; Brückener K; Steinbüchel A; Mitsky T Appl Microbiol Biotechnol; 2000 Apr; 53(4):420-9. PubMed ID: 10803898 [TBL] [Abstract][Full Text] [Related]
5. Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1. Ren Q; de Roo G; Witholt B; Zinn M; Thöny-Meyer L Microb Cell Fact; 2009 Nov; 8():60. PubMed ID: 19925642 [TBL] [Abstract][Full Text] [Related]
6. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Matsusaki H; Abe H; Taguchi K; Fukui T; Doi Y Appl Microbiol Biotechnol; 2000 Apr; 53(4):401-9. PubMed ID: 10803895 [TBL] [Abstract][Full Text] [Related]
7. Cloning, characterization and comparison of the Pseudomonas mendocina polyhydroxyalkanoate synthases Phac1 and PhaC2. Hein S; Paletta JR; Steinbüchel A Appl Microbiol Biotechnol; 2002 Feb; 58(2):229-36. PubMed ID: 11878309 [TBL] [Abstract][Full Text] [Related]
8. Construction of pha-operon-defined knockout mutants of Pseudomonas putida KT2442 and their applications in poly(hydroxyalkanoate) production. Ouyang SP; Liu Q; Fang L; Chen GQ Macromol Biosci; 2007 Feb; 7(2):227-33. PubMed ID: 17295412 [TBL] [Abstract][Full Text] [Related]
9. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Fiedler S; Steinbüchel A; Rehm BH Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060 [TBL] [Abstract][Full Text] [Related]
10. Engineering of polyhydroxyalkanoate (PHA) synthase PhaC2Ps of Pseudomonas stutzeri via site-specific mutation for efficient production of PHA copolymers. Shen XW; Shi ZY; Song G; Li ZJ; Chen GQ Appl Microbiol Biotechnol; 2011 Aug; 91(3):655-65. PubMed ID: 21509565 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of polyhydroxyalkanoate (PHA) copolymer from fructose using wild-type and laboratory-evolved PHA synthases. Tsuge T; Yano K; Imazu S; Numata K; Kikkawa Y; Abe H; Taguchi S; Doi Y Macromol Biosci; 2005 Feb; 5(2):112-7. PubMed ID: 15729719 [TBL] [Abstract][Full Text] [Related]
12. Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues. Amara AA; Rehm BH Biochem J; 2003 Sep; 374(Pt 2):413-21. PubMed ID: 12924980 [TBL] [Abstract][Full Text] [Related]
13. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Cheng J; Charles TC Appl Microbiol Biotechnol; 2016 Sep; 100(17):7611-27. PubMed ID: 27333909 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of two polyhydroxyalkanoate biosynthesis loci in Pseudomonas sp. strain 3Y2. Delamarre SC; Chang HJ; Batt CA Appl Microbiol Biotechnol; 2005 Dec; 69(3):293-303. PubMed ID: 16175367 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of a PHB synthase protein model. Rehm BH; Antonio RV; Spiekermann P; Amara AA; Steinbüchel A Biochim Biophys Acta; 2002 Jan; 1594(1):178-90. PubMed ID: 11825620 [TBL] [Abstract][Full Text] [Related]
16. Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference. Jiang X; Luo X; Zhou NY PLoS One; 2015; 10(11):e0142332. PubMed ID: 26544851 [TBL] [Abstract][Full Text] [Related]
17. Polymerase C1 levels and poly(R-3-hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. Kraak MN; Smits TH; Kessler B; Witholt B J Bacteriol; 1997 Aug; 179(16):4985-91. PubMed ID: 9260937 [TBL] [Abstract][Full Text] [Related]
18. In vivo and in vitro characterization of Ser477X mutations in polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. 61-3: effects of beneficial mutations on enzymatic activity, substrate specificity, and molecular weight of PHA. Matsumoto K; Aoki E; Takase K; Doi Y; Taguchi S Biomacromolecules; 2006 Aug; 7(8):2436-42. PubMed ID: 16903693 [TBL] [Abstract][Full Text] [Related]
19. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. Prieto MA; Bühler B; Jung K; Witholt B; Kessler B J Bacteriol; 1999 Feb; 181(3):858-68. PubMed ID: 9922249 [TBL] [Abstract][Full Text] [Related]
20. Production of P(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) terpolymers using a chimeric PHA synthase in recombinant Ralstonia eutropha and Pseudomonas putida. Sun J; Shozui F; Yamada M; Matsumoto K; Takase K; Taguchi S Biosci Biotechnol Biochem; 2010; 74(8):1716-8. PubMed ID: 20699558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]