BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15205426)

  • 1. Multiple paths for nonphysiological transport of K+ in Escherichia coli.
    Buurman ET; McLaggan D; Naprstek J; Epstein W
    J Bacteriol; 2004 Jul; 186(13):4238-45. PubMed ID: 15205426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli.
    Schlösser A; Meldorf M; Stumpe S; Bakker EP; Epstein W
    J Bacteriol; 1995 Apr; 177(7):1908-10. PubMed ID: 7896723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Independent functioning of the H+-K+ ion exchange systems in E. coli].
    Martirosov SM; Trchunian AA
    Biofizika; 1981; 26(5):817-21. PubMed ID: 7032605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of potassium transport loci in Escherichia coli: evidence for three constitutive systems mediating uptake potassium.
    Dosch DC; Helmer GL; Sutton SH; Salvacion FF; Epstein W
    J Bacteriol; 1991 Jan; 173(2):687-96. PubMed ID: 1987159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation transport in Escherichia coli. VIII. Potassium transport mutants.
    Rhoads DB; Waters FB; Epstein W
    J Gen Physiol; 1976 Mar; 67(3):325-41. PubMed ID: 4578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [ATPase activity and K+ transport in membranes of anaerobically grown trk-mutants of Escherichia coli].
    Trchunian AA; Vasilian AV
    Biokhimiia; 1993 Jul; 58(7):1062-70. PubMed ID: 8364123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12.
    Tanudjaja E; Hoshi N; Yamamoto K; Ihara K; Furuta T; Tsujii M; Ishimaru Y; Uozumi N
    J Biol Chem; 2023 Feb; 299(2):102846. PubMed ID: 36586436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium transport in a halophilic member of the bacteria domain: identification and characterization of the K+ uptake systems TrkH and TrkI from Halomonas elongata DSM 2581T.
    Kraegeloh A; Amendt B; Kunte HJ
    J Bacteriol; 2005 Feb; 187(3):1036-43. PubMed ID: 15659681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at a low pH.
    Trchounian A; Kobayashi H
    FEBS Lett; 1999 Mar; 447(2-3):144-8. PubMed ID: 10214935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy coupling to net K+ transport in Escherichia coli K-12.
    Rhoads DB; Epstein W
    J Biol Chem; 1977 Feb; 252(4):1394-401. PubMed ID: 320207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane.
    Bossemeyer D; Borchard A; Dosch DC; Helmer GC; Epstein W; Booth IR; Bakker EP
    J Biol Chem; 1989 Oct; 264(28):16403-10. PubMed ID: 2674131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and function analysis of a Halo-alkaline-adaptable Trk K+ uptake system in Alkalimonas amylolytica strain N10.
    Guo Y; Xue Y; Liu J; Wang Q; Ma Y
    Sci China C Life Sci; 2009 Oct; 52(10):949-57. PubMed ID: 19911131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux.
    Zakharyan E; Trchounian A
    FEMS Microbiol Lett; 2001 Oct; 204(1):61-4. PubMed ID: 11682179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAD+ binding to the Escherichia coli K(+)-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport.
    Schlösser A; Hamann A; Bossemeyer D; Schneider E; Bakker EP
    Mol Microbiol; 1993 Aug; 9(3):533-43. PubMed ID: 8412700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cation transport in Escherichia coli. IX. Regulation of K transport.
    Rhoads DB; Epstein W
    J Gen Physiol; 1978 Sep; 72(3):283-95. PubMed ID: 359759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+ uptake by fermenting Escherichia coli cells: pH dependent mode of the TrkA system operating.
    Trchounian A; Kobayashi H
    Biosci Rep; 2000 Aug; 20(4):277-88. PubMed ID: 11092250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K⁺ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter.
    Sato Y; Nanatani K; Hamamoto S; Shimizu M; Takahashi M; Tabuchi-Kobayashi M; Mizutani A; Schroeder JI; Souma S; Uozumi N
    J Biochem; 2014 May; 155(5):315-23. PubMed ID: 24519967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of hyf-encoded hydrogenase 4 in molecular hydrogen release coupled with proton-potassium exchange in Escherichia coli.
    Bagramyan K; Vassilian A; Mnatsakanyan N; Trchounian A
    Membr Cell Biol; 2001; 14(6):749-63. PubMed ID: 11817571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kup-mediated Cs
    Tanudjaja E; Hoshi N; Su YH; Hamamoto S; Uozumi N
    Sci Rep; 2017 May; 7(1):2122. PubMed ID: 28522840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.