BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15205460)

  • 1. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice.
    Aihara K; Azuma H; Akaike M; Ikeda Y; Yamashita M; Sudo T; Hayashi H; Yamada Y; Endoh F; Fujimura M; Yoshida T; Yamaguchi H; Hashizume S; Kato M; Yoshimura K; Yamamoto Y; Kato S; Matsumoto T
    J Biol Chem; 2004 Aug; 279(34):35798-802. PubMed ID: 15205460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Vitamin D-vitamin D receptor system regulates antithrombogenicity in vivo].
    Aihara K; Azuma H; Matsumoto T
    Clin Calcium; 2006 Jul; 16(7):1173-79. PubMed ID: 16816478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue.
    Narvaez CJ; Matthews D; Broun E; Chan M; Welsh J
    Endocrinology; 2009 Feb; 150(2):651-61. PubMed ID: 18845643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.
    Cui M; Li Q; Johnson R; Fleet JC
    J Bone Miner Res; 2012 Oct; 27(10):2097-107. PubMed ID: 22589201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of mammary tumor cell lines from wild type and vitamin D3 receptor knockout mice.
    Zinser GM; McEleney K; Welsh J
    Mol Cell Endocrinol; 2003 Feb; 200(1-2):67-80. PubMed ID: 12644300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical role of calbindin-D28k in calcium homeostasis revealed by mice lacking both vitamin D receptor and calbindin-D28k.
    Zheng W; Xie Y; Li G; Kong J; Feng JQ; Li YC
    J Biol Chem; 2004 Dec; 279(50):52406-13. PubMed ID: 15456794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [VDR knockout mice and bone mineralization disorders].
    Takeyama K; Yamamoto Y; Kato S
    Clin Calcium; 2007 Oct; 17(10):1560-6. PubMed ID: 17906409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin D Regulates Fatty Acid Composition in Subcutaneous Adipose Tissue Through Elovl3.
    Ji L; Gupta M; Feldman BJ
    Endocrinology; 2016 Jan; 157(1):91-7. PubMed ID: 26488808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nongenomic effects of 1α,25-dihydroxyvitamin D
    Hirota Y; Nakagawa K; Mimatsu S; Sawada N; Sakaki T; Kubodera N; Kamao M; Tsugawa N; Suhara Y; Okano T
    Biochem Biophys Res Commun; 2017 Jan; 483(1):359-365. PubMed ID: 28025137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice.
    Andrukhova O; Slavic S; Zeitz U; Riesen SC; Heppelmann MS; Ambrisko TD; Markovic M; Kuebler WM; Erben RG
    Mol Endocrinol; 2014 Jan; 28(1):53-64. PubMed ID: 24284821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of deoxyribonucleic acid binding domain of the vitamin D receptor abrogates genomic and nongenomic functions of vitamin D.
    Erben RG; Soegiarto DW; Weber K; Zeitz U; Lieberherr M; Gniadecki R; Möller G; Adamski J; Balling R
    Mol Endocrinol; 2002 Jul; 16(7):1524-37. PubMed ID: 12089348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo function of VDR in gene expression-VDR knock-out mice.
    Kato S; Takeyama K; Kitanaka S; Murayama A; Sekine K; Yoshizawa T
    J Steroid Biochem Mol Biol; 1999; 69(1-6):247-51. PubMed ID: 10418998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1 alpha,25-Dihydroxyvitamin D(3) is a preventive factor in the metastasis of lung cancer.
    Nakagawa K; Kawaura A; Kato S; Takeda E; Okano T
    Carcinogenesis; 2005 Feb; 26(2):429-40. PubMed ID: 15539405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of renal vitamin D receptor is an important determinant of 1alpha,25-dihydroxyvitamin D(3) levels in vivo.
    Beckman MJ; DeLuca HF
    Arch Biochem Biophys; 2002 May; 401(1):44-52. PubMed ID: 12054486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered gene expression profile in the kidney of vitamin D receptor knockout mice.
    Li X; Zheng W; Li YC
    J Cell Biochem; 2003 Jul; 89(4):709-19. PubMed ID: 12858337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems.
    Xiang W; Kong J; Chen S; Cao LP; Qiao G; Zheng W; Liu W; Li X; Gardner DG; Li YC
    Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E125-32. PubMed ID: 15367398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin D Receptor-Dependent Signaling Protects Mice From Dextran Sulfate Sodium-Induced Colitis.
    Wang F; Johnson RL; DeSmet ML; Snyder PW; Fairfax KC; Fleet JC
    Endocrinology; 2017 Jun; 158(6):1951-1963. PubMed ID: 28368514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal resistance to 1,25 dihydroxyvitamin D in mice heterozygous for the vitamin D receptor knockout allele.
    Song Y; Fleet JC
    Endocrinology; 2007 Mar; 148(3):1396-402. PubMed ID: 17110426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density.
    Matthews DG; D'Angelo J; Drelich J; Welsh J
    J Steroid Biochem Mol Biol; 2016 Nov; 164():299-308. PubMed ID: 26429395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.