These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15205875)

  • 1. Adrenergic targets for the treatment of cognitive deficits in schizophrenia.
    Arnsten AF
    Psychopharmacology (Berl); 2004 Jun; 174(1):25-31. PubMed ID: 15205875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex.
    Berridge CW; Spencer RC
    Brain Res; 2016 Jun; 1641(Pt B):189-96. PubMed ID: 26592951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catecholamine regulation of the prefrontal cortex.
    Arnsten AF
    J Psychopharmacol; 1997; 11(2):151-62. PubMed ID: 9208378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanfacine's mechanism of action in treating prefrontal cortical disorders: Successful translation across species.
    Arnsten AFT
    Neurobiol Learn Mem; 2020 Dec; 176():107327. PubMed ID: 33075480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenergic pharmacology and cognition: focus on the prefrontal cortex.
    Ramos BP; Arnsten AF
    Pharmacol Ther; 2007 Mar; 113(3):523-36. PubMed ID: 17303246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective enhancement of mesocortical dopaminergic transmission by noradrenergic drugs: therapeutic opportunities in schizophrenia.
    Masana M; Bortolozzi A; Artigas F
    Int J Neuropsychopharmacol; 2011 Feb; 14(1):53-68. PubMed ID: 20701825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential noradrenergic targets for cognitive enhancement in schizophrenia.
    Friedman JI; Stewart DG; Gorman JM
    CNS Spectr; 2004 May; 9(5):350-5. PubMed ID: 15115947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive decline.
    Kauser H; Sahu S; Kumar S; Panjwani U
    Neuroscience; 2013 Dec; 254():110-9. PubMed ID: 24056194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice.
    Ortega-Alvaro A; Aracil-Fernández A; García-Gutiérrez MS; Navarrete F; Manzanares J
    Neuropsychopharmacology; 2011 Jun; 36(7):1489-504. PubMed ID: 21430651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanfacine for the treatment of cognitive disorders: a century of discoveries at Yale.
    Arnsten AF; Jin LE
    Yale J Biol Med; 2012 Mar; 85(1):45-58. PubMed ID: 22461743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function.
    Berridge CW; Devilbiss DM; Andrzejewski ME; Arnsten AF; Kelley AE; Schmeichel B; Hamilton C; Spencer RC
    Biol Psychiatry; 2006 Nov; 60(10):1111-20. PubMed ID: 16806100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of α(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors.
    Santana N; Mengod G; Artigas F
    Int J Neuropsychopharmacol; 2013 Jun; 16(5):1139-51. PubMed ID: 23195622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
    Seamans JK; Yang CR
    Prog Neurobiol; 2004 Sep; 74(1):1-58. PubMed ID: 15381316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacologic strategies for augmenting cognitive performance in schizophrenia.
    Friedman JI; Temporini H; Davis KL
    Biol Psychiatry; 1999 Jan; 45(1):1-16. PubMed ID: 9894570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex.
    Moore TL; Schettler SP; Killiany RJ; Herndon JG; Luebke JI; Moss MB; Rosene DL
    Behav Brain Res; 2005 May; 160(2):208-21. PubMed ID: 15863218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress Impairs Prefrontal Cortical Function via D1 Dopamine Receptor Interactions With Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels.
    Gamo NJ; Lur G; Higley MJ; Wang M; Paspalas CD; Vijayraghavan S; Yang Y; Ramos BP; Peng K; Kata A; Boven L; Lin F; Roman L; Lee D; Arnsten AF
    Biol Psychiatry; 2015 Dec; 78(12):860-70. PubMed ID: 25731884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Stress Exposure on Prefrontal Cortex: Translating Basic Research into Successful Treatments for Post-Traumatic Stress Disorder.
    Arnsten AF; Raskind MA; Taylor FB; Connor DF
    Neurobiol Stress; 2015 Jan; 1():89-99. PubMed ID: 25436222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms of long-term depression induced by noradrenaline in rat prefrontal neurons.
    Marzo A; Bai J; Caboche J; Vanhoutte P; Otani S
    Neuroscience; 2010 Aug; 169(1):74-86. PubMed ID: 20434527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine's Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders.
    Arnsten AF; Wang M; Paspalas CD
    Pharmacol Rev; 2015 Jul; 67(3):681-96. PubMed ID: 26106146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.