These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 1520736)
1. In vitro digestion of dystrophin by calcium-dependent proteases, calpains I and II. Cottin P; Poussard S; Mornet D; Brustis JJ; Mohammadpour M; Leger J; Ducastaing A Biochimie; 1992 Jun; 74(6):565-70. PubMed ID: 1520736 [TBL] [Abstract][Full Text] [Related]
2. Calcium homeostasis and cell death in Sol8 dystrophin-deficient cell line in culture. Marchand E; Constantin B; Vandebrouck C; Raymond G; Cognard C Cell Calcium; 2001 Feb; 29(2):85-96. PubMed ID: 11162846 [TBL] [Abstract][Full Text] [Related]
3. Calpain concentration is elevated although net calcium-dependent proteolysis is suppressed in dystrophin-deficient muscle. Spencer MJ; Tidball JG Exp Cell Res; 1992 Nov; 203(1):107-14. PubMed ID: 1426033 [TBL] [Abstract][Full Text] [Related]
5. Utrophin is a calpain substrate in muscle cells. Courdier-Fruh I; Briguet A Muscle Nerve; 2006 Jun; 33(6):753-9. PubMed ID: 16598790 [TBL] [Abstract][Full Text] [Related]
6. Degradation of cytokeratin intermediate filaments by calcium-activated proteases (calpains) in vitro: implications for formation of Mallory bodies. Makowski GS; Ramsby ML Res Commun Mol Pathol Pharmacol; 1998 Sep; 101(3):211-23. PubMed ID: 9874279 [TBL] [Abstract][Full Text] [Related]
7. In situ measurements of calpain activity in isolated muscle fibres from normal and dystrophin-lacking mdx mice. Gailly P; De Backer F; Van Schoor M; Gillis JM J Physiol; 2007 Aug; 582(Pt 3):1261-75. PubMed ID: 17510188 [TBL] [Abstract][Full Text] [Related]
8. Proteolytic susceptibility of the central domain in chicken gizzard and skeletal muscle dystrophins. Augier N; Leger J; Robert A; Pons F; Leger JJ; Mornet D Biochim Biophys Acta; 1992 Apr; 1138(4):297-304. PubMed ID: 1562616 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of different C-terminal fragments of dystrophin expressed in Escherichia coli. Milner RE; Busaan J; Michalak M Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):1037-44. PubMed ID: 1471976 [TBL] [Abstract][Full Text] [Related]
10. Absence of extraocular muscle pathology in Duchenne's muscular dystrophy: role for calcium homeostasis in extraocular muscle sparing. Khurana TS; Prendergast RA; Alameddine HS; Tomé FM; Fardeau M; Arahata K; Sugita H; Kunkel LM J Exp Med; 1995 Aug; 182(2):467-75. PubMed ID: 7629506 [TBL] [Abstract][Full Text] [Related]
11. Proteinase-sensitive sites on isolated rabbit dystrophin. Yoshida M; Suzuki A; Shimizu T; Ozawa E J Biochem; 1992 Oct; 112(4):433-9. PubMed ID: 1490998 [TBL] [Abstract][Full Text] [Related]
12. Glycoprotein-binding site of dystrophin is confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. Suzuki A; Yoshida M; Yamamoto H; Ozawa E FEBS Lett; 1992 Aug; 308(2):154-60. PubMed ID: 1499724 [TBL] [Abstract][Full Text] [Related]
13. Muscular degeneration in the absence of dystrophin is a calcium-dependent process. Mariol MC; Ségalat L Curr Biol; 2001 Oct; 11(21):1691-4. PubMed ID: 11696327 [TBL] [Abstract][Full Text] [Related]
14. Improvement of calcium handling and changes in calcium-release properties after mini- or full-length dystrophin forced expression in cultured skeletal myotubes. Marchand E; Constantin B; Balghi H; Claudepierre MC; Cantereau A; Magaud C; Mouzou A; Raymond G; Braun S; Cognard C Exp Cell Res; 2004 Jul; 297(2):363-79. PubMed ID: 15212940 [TBL] [Abstract][Full Text] [Related]
15. Effect of calpain and proteasome inhibition on Ca2+-dependent proteolysis and muscle histopathology in the mdx mouse. Briguet A; Erb M; Courdier-Fruh I; Barzaghi P; Santos G; Herzner H; Lescop C; Siendt H; Henneboehle M; Weyermann P; Magyar JP; Dubach-Powell J; Metz G; Meier T FASEB J; 2008 Dec; 22(12):4190-200. PubMed ID: 18728218 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the recombinant C-terminal domain of dystrophin: phosphorylation by calmodulin-dependent protein kinase II and dephosphorylation by type 2B protein phosphatase. Walsh MP; Busaan JL; Fraser ED; Fu SY; Pato MD; Michalak M Biochemistry; 1995 Apr; 34(16):5561-8. PubMed ID: 7727417 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of a calpastatin transgene in mdx muscle reduces dystrophic pathology. Spencer MJ; Mellgren RL Hum Mol Genet; 2002 Oct; 11(21):2645-55. PubMed ID: 12354790 [TBL] [Abstract][Full Text] [Related]
18. Immunological analysis of two calpain-like Ca2+-dependent proteinases from lobster striated muscles: relationship to mammalian and Drosophila calpains. Beyette JR; Emori Y; Mykles DL Arch Biochem Biophys; 1997 Jan; 337(2):232-8. PubMed ID: 9016818 [TBL] [Abstract][Full Text] [Related]
19. Calcium-dependent proteolytic system and muscle dysfunctions: a possible role of calpains in sarcopenia. Dargelos E; Poussard S; Brulé C; Daury L; Cottin P Biochimie; 2008 Feb; 90(2):359-68. PubMed ID: 17881114 [TBL] [Abstract][Full Text] [Related]
20. Effect of protease inhibitors and clenbuterol on the in vitro degradation of dystrophin by endogenous proteases in human skeletal muscle. Maltin CA; Jones P; Mantle D Biosci Rep; 1993 Jun; 13(3):159-67. PubMed ID: 8268423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]