BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15207568)

  • 21. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns.
    Zhang Y; Banks C
    Water Res; 2006 Feb; 40(4):788-98. PubMed ID: 16448685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between iron availability, aluminium toxicity and fungal siderophores.
    Illmer P; Buttinger R
    Biometals; 2006 Aug; 19(4):367-77. PubMed ID: 16841246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger.
    Park D; Yun YS; Jo JH; Park JM
    Water Res; 2005 Feb; 39(4):533-40. PubMed ID: 15707625
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic removal in an iron oxide-coated fungal biomass column: analysis of breakthrough curves.
    Pokhrel D; Viraraghavan T
    Bioresour Technol; 2008 Apr; 99(6):2067-71. PubMed ID: 17560780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review.
    Gikas P
    J Hazard Mater; 2008 Nov; 159(2-3):187-203. PubMed ID: 18394791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosorption of simulated dyed effluents by inactivated fungal biomasses.
    Prigione V; Varese GC; Casieri L; Marchisio VF
    Bioresour Technol; 2008 Jun; 99(9):3559-67. PubMed ID: 17888654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of Mediterranean woody seedlings to copper, nickel and zinc.
    Fuentes D; Disante KB; Valdecantos A; Cortina J; Vallejo VR
    Chemosphere; 2007 Jan; 66(3):412-20. PubMed ID: 16870229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.
    Andrade MD; Prasher SO; Hendershot WH
    Environ Pollut; 2007 Jun; 147(3):781-90. PubMed ID: 17218042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tolerance of three fungal species to lithium and cobalt: Implications for bioleaching of spent rechargeable Li-ion batteries.
    Lobos A; Harwood VJ; Scott KM; Cunningham JA
    J Appl Microbiol; 2021 Aug; 131(2):743-755. PubMed ID: 33251646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of radiocobalt from EDTA-complexes using oxidation and selective ion exchange.
    Malinen LK; Koivula R; Harjula R
    Water Sci Technol; 2009; 60(4):1097-101. PubMed ID: 19700850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosorption of nickel using filamentous fungi.
    Mogollón L; Rodríguez R; Larrota W; Ramirez N; Torres R
    Appl Biochem Biotechnol; 1998; 70-72():593-601. PubMed ID: 9627396
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of processing for saponin removal on fungal contamination of quinoa seeds (Chenopodium quinoa Willd.).
    Pappier U; Fernández Pinto V; Larumbe G; Vaamonde G
    Int J Food Microbiol; 2008 Jul; 125(2):153-7. PubMed ID: 18501985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: a greener approach.
    Lahiri S; Sarkar S
    Appl Radiat Isot; 2007 Apr; 65(4):387-91. PubMed ID: 17218106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cobalt 60 radiation and growth of eleven species of micro-fungi from Evolution Canyon, Lower Nahal Oren, Israel.
    Volz PA; Rosenzweig N; Blackburn RB; Wasser SP; Nevo E
    Microbios; 1997; 91(368-369):191-201. PubMed ID: 9523426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system.
    Szabo JG; Impellitteri CA; Govindaswamy S; Hall JS
    Water Res; 2009 Dec; 43(20):5005-14. PubMed ID: 19726069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of Co2+ from aqueous solutions by hydroxyapatite.
    Smiciklas I; Dimović I; Mitrić M
    Water Res; 2006 Jul; 40(12):2267-74. PubMed ID: 16766010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal chemistry of sodium zirconium phosphate based simulated ceramic waste forms of effluent cations (Ba(2+), Sn(4+), Fe(3+), Cr(3+), Ni(2+) and Si(4+)) from light water reactor fuel reprocessing plants.
    Shrivastava OP; Chourasia R
    J Hazard Mater; 2008 May; 153(1-2):285-92. PubMed ID: 17905513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.