These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 15207596)

  • 1. The use of micro-algal biomass as a carbon source for biological sulphate reducing systems.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2659-66. PubMed ID: 15207596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannery effluent as a carbon source for biological sulphate reduction.
    Boshoff G; Duncan J; Rose PD
    Water Res; 2004 Jun; 38(11):2651-8. PubMed ID: 15207595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial sulphate reduction during anaerobic digestion: EGSB process performance and potential for nitrite suppression of SRB activity.
    O'Reilly C; Colleran E
    Water Sci Technol; 2005; 52(1-2):371-6. PubMed ID: 16180452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic treatment of landfill leachate by sulfate reduction.
    Henry JG; Prasad D
    Water Sci Technol; 2000; 41(3):239-46. PubMed ID: 11381997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria.
    Wang A; Ren N; Wang X; Lee D
    J Hazard Mater; 2008 Jun; 154(1-3):1060-5. PubMed ID: 18093734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of influent COD/SO4(2-) ratios on mesophilic anaerobic reactor biomass populations: physico-chemical and microbiological properties.
    O'Reilly C; Colleran E
    FEMS Microbiol Ecol; 2006 Apr; 56(1):141-53. PubMed ID: 16542412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study.
    Singh R; Kumar A; Kirrolia A; Kumar R; Yadav N; Bishnoi NR; Lohchab RK
    Bioresour Technol; 2011 Jan; 102(2):677-82. PubMed ID: 20884204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of substrate concentrations on the growth of heterotrophic bacteria and algae in secondary facultative ponds.
    Kayombo S; Mbwette TS; Katima JH; Jorgensen SE
    Water Res; 2003 Jul; 37(12):2937-43. PubMed ID: 12767296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of sulphate reducing bacteria according to COD/SO4(2-) ratio of acrylonitrile wastewater containing high sulphate.
    Byun IG; Lee TH; Kim YO; Song SK; Park TJ
    Water Sci Technol; 2004; 49(5-6):229-35. PubMed ID: 15137428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AnSBBR applied to organic matter and sulfate removal: interaction effect between feed strategy and COD/sulfate ratio.
    Friedl GF; Mockaitis G; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Appl Biochem Biotechnol; 2009 Oct; 159(1):95-109. PubMed ID: 19277484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of an anaerobic bioreactor with biomass recycling, continuously removing COD and sulphate from industrial wastes.
    Kosińska K; Miśkiewicz T
    Bioresour Technol; 2009 Jan; 100(1):86-90. PubMed ID: 18650086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic treatment of Hong Kong leachate followed by chemical oxidation.
    Fang HH; Lau IW; Wang P
    Water Sci Technol; 2005; 52(10-11):41-9. PubMed ID: 16459775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO(4)(2-) ratio.
    Sabumon PC
    J Hazard Mater; 2008 Nov; 159(2-3):616-25. PubMed ID: 18400386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of ethanol on sulfate reduction and methanogenesis].
    Wang Q; Liu B; Yan DD; Li S; Chen ZZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of feed time and sulfate load on the organic and sulfate removal in an ASBR.
    Mockaitis G; Friedl GF; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Bioresour Technol; 2010 Sep; 101(17):6642-50. PubMed ID: 20392632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters.
    Chou HH; Huang JS; Chen WG; Ohara R
    Bioresour Technol; 2008 Nov; 99(17):8061-7. PubMed ID: 18448334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.
    Velasco A; Ramírez M; Volke-Sepúlveda T; González-Sánchez A; Revah S
    J Hazard Mater; 2008 Mar; 151(2-3):407-13. PubMed ID: 17640800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: results of a modeling study.
    Lackner S; Terada A; Smets BF
    Water Res; 2008 Feb; 42(4-5):1102-12. PubMed ID: 17915280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.