BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15207596)

  • 21. Effect of COD/SO(4)(2-) ratio and sulfide on thermophilic (55 degrees C) sulfate reduction during the acidification of sucrose at pH 6.
    Lopes SI; Wang X; Capela MI; Lens PN
    Water Res; 2007 Jun; 41(11):2379-92. PubMed ID: 17434203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia.
    González C; Marciniak J; Villaverde S; León C; García PA; Muñoz R
    Water Sci Technol; 2008; 58(1):95-102. PubMed ID: 18653942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamics and mathematical modelling in a low HRT inverse fluidized-bed reactor for biological sulphate reduction.
    Reyes-Alvarado LC; Hatzikioseyian A; Rene ER; Houbron E; Rustrian E; Esposito G; Lens PNL
    Bioprocess Biosyst Eng; 2018 Dec; 41(12):1869-1882. PubMed ID: 30269218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological inverse fluidized-bed reactors for the treatment of low pH- and sulphate-containing wastewaters under different COD/SO4(2-) conditions.
    Papirio S; Esposito G; Pirozzi F
    Environ Technol; 2013; 34(9-12):1141-9. PubMed ID: 24191446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis.
    Lloyd JR; Klessa DA; Parry DL; Buck P; Brown NL
    Water Res; 2004 Apr; 38(7):1822-30. PubMed ID: 15026237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The removal of uranium from mining waste water using algal/microbial biomass.
    Kalin M; Wheeler WN; Meinrath G
    J Environ Radioact; 2005; 78(2):151-77. PubMed ID: 15511557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of molybdate on methanogenic and sulfidogenic activity of biomass.
    Patidar SK; Tare V
    Bioresour Technol; 2005 Jul; 96(11):1215-22. PubMed ID: 15734307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of nutrients on biomass evolution in an upflow anaerobic sludge blanket reactor degrading sulfate-laden organics.
    Patidar SK; Tare V
    Water Environ Res; 2004; 76(7):2620-7. PubMed ID: 16042109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical modeling and optimization of biomass granulation and COD removal in UASB reactors treating low strength wastewaters.
    Bhunia P; Ghangrekar MM
    Bioresour Technol; 2008 Jul; 99(10):4229-38. PubMed ID: 17936620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological pre-treatment of wastewater containing sulfate using anaerobic immobilized cells.
    Kuo WC; Shu TY
    J Hazard Mater; 2004 Sep; 113(1-3):147-55. PubMed ID: 15363525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea.
    Silva AJ; Hirasawa JS; Varesche MB; Foresti E; Zaiat M
    Anaerobe; 2006 Apr; 12(2):93-8. PubMed ID: 16701621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification.
    Reyes-Avila J; Razo-Flores E; Gomez J
    Water Res; 2004; 38(14-15):3313-21. PubMed ID: 15276748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams.
    Briones AM; Daugherty BJ; Angenent LT; Rausch KD; Tumbleson ME; Raskin L
    Environ Microbiol; 2007 Jan; 9(1):93-106. PubMed ID: 17227415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands.
    Stein OR; Borden-Stewart DJ; Hook PB; Jones WL
    Water Res; 2007 Aug; 41(15):3440-8. PubMed ID: 17599383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.