These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15207596)

  • 41. Performance of sulfidogenic anaerobic baffled reactor (ABR) treating acidic and zinc-containing wastewater.
    Bayrakdar A; Sahinkaya E; Gungor M; Uyanik S; Atasoy AD
    Bioresour Technol; 2009 Oct; 100(19):4354-60. PubMed ID: 19428238
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor.
    Sipma J; Osuna MB; Lettinga G; Stams AJ; Lens PN
    Water Res; 2007 May; 41(9):1995-2003. PubMed ID: 17336364
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous removal of ammonium-nitrogen and sulphate from wastewaters with an anaerobic attached-growth bioreactor.
    Zhao QI; Li W; You SJ
    Water Sci Technol; 2006; 54(8):27-35. PubMed ID: 17163010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sulfate reduction at pH 4 during the thermophilic (55 degrees C) acidification of sucrose in UASB reactors.
    Lopes SI; Capela MI; Dar SA; Muyzer G; Lens PN
    Biotechnol Prog; 2008; 24(6):1278-89. PubMed ID: 19194942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treatment of leachate from MSWI bottom ash landfilling with anaerobic sulphate-reducing process.
    Sivula LJ; Väisänen AO; Rintala JA
    Water Res; 2007 Feb; 41(4):835-41. PubMed ID: 17224170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD:sulfate ratios in a UASB reactor.
    Hirasawa JS; Sarti A; Del Aguila NK; Varesche MB
    Anaerobe; 2008 Oct; 14(4):209-18. PubMed ID: 18634895
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of the Sulphidogenesis Cum Ammonia Removal Process for treatment of tannery effluent.
    Sabumon PC
    Water Sci Technol; 2008; 58(2):391-7. PubMed ID: 18701791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors.
    Cruz Viggi C; Pagnanelli F; Cibati A; Uccelletti D; Palleschi C; Toro L
    Water Res; 2010 Jan; 44(1):151-8. PubMed ID: 19804893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial sulphate reduction at a low pH.
    Koschorreck M
    FEMS Microbiol Ecol; 2008 Jun; 64(3):329-42. PubMed ID: 18445022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions.
    Cheong DY; Hansen CL
    Bioresour Technol; 2008 Jul; 99(11):5058-68. PubMed ID: 17981029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.
    Jong T; Parry DL
    Water Res; 2006 Jul; 40(13):2561-71. PubMed ID: 16814360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands.
    Caselles-Osorio A; García J
    Sci Total Environ; 2007 Jun; 378(3):253-62. PubMed ID: 17433416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction.
    Thabet OB; Bouallagui H; Cayol JL; Ollivier B; Fardeau ML; Hamdi M
    J Hazard Mater; 2009 Aug; 167(1-3):1133-40. PubMed ID: 19272702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Treatment of a high-strength sulphate-rich alkaline leachate using an anaerobic filter.
    Wang Z; Banks CJ
    Waste Manag; 2007; 27(3):359-66. PubMed ID: 16574396
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of detachment on substrate removal and microbial ecology in a heterotrophic/autotrophic biofilm.
    Elenter D; Milferstedt K; Zhang W; Hausner M; Morgenroth E
    Water Res; 2007 Dec; 41(20):4657-71. PubMed ID: 17655911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate.
    Icgen B; Harrison S
    Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions.
    Majumder PS; Gupta SK
    Bioresour Technol; 2008 Jul; 99(10):4169-77. PubMed ID: 17928222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of hydrophobic membranes to supply hydrogen to sulphate reducing bioreactors.
    Fedorovich V; Greben M; Kalyuzhnyi S; Lens P; Hulshoff Pol L
    Biodegradation; 2000; 11(5):295-303. PubMed ID: 11487059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The impact of influent nutrient ratios and biochemical reactions on oxygen transfer in an EBPR process--a theoretical explanation.
    Mahendraker V; Mavinic DS; Rabinowitz B; Hall KJ
    Biotechnol Bioeng; 2005 Jul; 91(1):22-42. PubMed ID: 15880396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of air-cathode pipe reactor to simultaneously suppress sulphate reduction and accelerate COD oxidation in synthetic wastewater.
    Aboutalebi H; Sathasivan A; Kuan MS
    Bioresour Technol; 2012 Jun; 113():276-9. PubMed ID: 22361071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.