BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 15207735)

  • 1. High-resolution AFM imaging of intact and fractured trabecular bone.
    Hassenkam T; Fantner GE; Cutroni JA; Weaver JC; Morse DE; Hansma PK
    Bone; 2004 Jul; 35(1):4-10. PubMed ID: 15207735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructure of the neurocentral growth plate: Insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy.
    Hauge Bünger M; Foss M; Erlacher K; Bruun Hovgaard M; Chevallier J; Langdahl B; Bünger C; Birkedal H; Besenbacher F; Skov Pedersen J
    Bone; 2006 Sep; 39(3):530-41. PubMed ID: 16769265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy.
    Cisneros DA; Hung C; Franz CM; Muller DJ
    J Struct Biol; 2006 Jun; 154(3):232-45. PubMed ID: 16600632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular remodelling of individual collagen fibrils visualized by time-lapse AFM.
    Friedrichs J; Taubenberger A; Franz CM; Muller DJ
    J Mol Biol; 2007 Sep; 372(3):594-607. PubMed ID: 17686490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical structural comparisons of bones from wild-type and liliput(dtc232) gene-mutated Zebrafish.
    Wang XM; Cui FZ; Ge J; Wang Y
    J Struct Biol; 2004 Mar; 145(3):236-45. PubMed ID: 14960374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralised tissues as nanomaterials: analysis by atomic force microscopy.
    Bozec L; de Groot J; Odlyha M; Nicholls B; Horton MA
    IEE Proc Nanobiotechnol; 2005 Oct; 152(5):183-6. PubMed ID: 16441178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrous long spacing type collagen fibrils have a hierarchical internal structure.
    Wen CK; Goh MC
    Proteins; 2006 Jul; 64(1):227-33. PubMed ID: 16609970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods.
    Hirsch M; Prenant G; Renard G
    Exp Eye Res; 2001 Feb; 72(2):123-35. PubMed ID: 11161728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy on human trabecular bone from an old woman with osteoporotic fractures.
    Hassenkam T; Jørgensen HL; Pedersen MB; Kourakis AH; Simonsen L; Lauritzen JB
    Micron; 2005; 36(7-8):681-7. PubMed ID: 16182551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extracellular matrix of the human aortic wall: ultrastructural observations by FEG-SEM and by tapping-mode AFM.
    Raspanti M; Protasoni M; Manelli A; Guizzardi S; Mantovani V; Sala A
    Micron; 2006; 37(1):81-6. PubMed ID: 16081297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different crimp patterns in collagen fibrils relate to the subfibrillar arrangement.
    Franchi M; Raspanti M; Dell'Orbo C; Quaranta M; De Pasquale V; Ottani V; Ruggeri A
    Connect Tissue Res; 2008; 49(2):85-91. PubMed ID: 18382894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy.
    Lin AC; Goh MC
    Proteins; 2002 Nov; 49(3):378-84. PubMed ID: 12360527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of mineral structure in normally calcifying avian tendon.
    Siperko LM; Landis WJ
    J Struct Biol; 2001 Sep; 135(3):313-20. PubMed ID: 11722171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone.
    Rubin MA; Rubin J; Jasiuk I
    Bone; 2004 Jul; 35(1):11-20. PubMed ID: 15207736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in human type I collagen fibrils investigated by force spectroscopy.
    Graham JS; Vomund AN; Phillips CL; Grandbois M
    Exp Cell Res; 2004 Oct; 299(2):335-42. PubMed ID: 15350533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electron microscopy studies of collagen, mineral and ground substance in human cortical bone.
    Frasca P; Harper RA; Katz JL
    Scan Electron Microsc; 1981; (Pt 3):339-46. PubMed ID: 7330582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micromechanical bending of single collagen fibrils using atomic force microscopy.
    Yang L; van der Werf KO; Koopman BF; Subramaniam V; Bennink ML; Dijkstra PJ; Feijen J
    J Biomed Mater Res A; 2007 Jul; 82(1):160-8. PubMed ID: 17269147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.