These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15208079)

  • 1. Neuronal intermediate filaments in the developing tongue of the frog Rana esculenta.
    Zuwala K; Merigo F; Zancanaro C
    Eur J Histochem; 2004; 48(2):121-8. PubMed ID: 15208079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical investigation of the nitrergic system in the taste organ of the frog, Rana esculenta.
    Zaccone G; Crescimanno C; Lo Cascio P; Mauceri A; Fasulo S; Sbarbati A
    Chem Senses; 2002 Nov; 27(9):825-30. PubMed ID: 12438208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of the tongue and morphological and cytological changes in taste discs of Rana esculenta.
    Zuwała K
    J Submicrosc Cytol Pathol; 2002 Jan; 34(1):17-25. PubMed ID: 11989853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of sensory and sympathetic denervation of the frog tongue on the catecholamine containing cells of the taste buds].
    Esakov AI; Krokhina EM; Savushkina MA
    Tsitologiia; 1976 Oct; 18(10):1180-4. PubMed ID: 1088229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merkel cells are responsible for the initiation of taste organ morphogenesis in the frog.
    Toyoshima K; Seta Y; Toyono T; Takeda S
    J Comp Neurol; 1999 Mar; 406(1):129-40. PubMed ID: 10100896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial patterns of tenascin and laminin immunoreactivity suggest roles for extracellular matrix in development of gustatory papillae and taste buds.
    Mistretta CM; Haus LF
    J Comp Neurol; 1996 Jan; 364(3):535-555. PubMed ID: 8820882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins.
    Beaulieu JM; Julien JP
    J Neurochem; 2003 Apr; 85(1):248-56. PubMed ID: 12641746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression and localization of neuronal intermediate filament proteins within newly developing neurites in dissociated cultures of Xenopus laevis embryonic spinal cord.
    Undamatla J; Szaro BG
    Cell Motil Cytoskeleton; 2001 May; 49(1):16-32. PubMed ID: 11309837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substance P-like immunoreactive fibers in the frog taste organs.
    Hirata K; Kanaseki T
    Experientia; 1987 Apr; 43(4):386-9. PubMed ID: 2436940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing of neuronal intermediate filament proteins expression in the mouse vomeronasal organ during pre- and postnatal development. An immunohistochemical study.
    Merigo F; Mucignat-Caretta C; Zancanaro C
    Chem Senses; 2005 Oct; 30(8):707-17. PubMed ID: 16179384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of two neuronal intermediate-filament proteins, peripherin and the low-molecular-mass neurofilament protein (NF-L), during the development of the rat.
    Escurat M; Djabali K; Gumpel M; Gros F; Portier MM
    J Neurosci; 1990 Mar; 10(3):764-84. PubMed ID: 2108230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taste disks are induced in the lingual epithelium of salamanders during metamorphosis.
    Takeuchi H; Ido S; Kaigawa Y; Nagai T
    Chem Senses; 1997 Oct; 22(5):535-45. PubMed ID: 9363353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some neural intermediate filaments contain both peripherin and the neurofilament proteins.
    Parysek LM; McReynolds MA; Goldman RD; Ley CA
    J Neurosci Res; 1991 Sep; 30(1):80-91. PubMed ID: 1795409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental regulation of two distinct neuronal phenotypes in rat dorsal root ganglia.
    Goldstein ME; Grant P; House SB; Henken DB; Gainer H
    Neuroscience; 1996 Mar; 71(1):243-58. PubMed ID: 8834406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit.
    Beaulieu JM; Jacomy H; Julien JP
    J Neurosci; 2000 Jul; 20(14):5321-8. PubMed ID: 10884316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of multiple neurofilament mRNAs during regeneration of vertebrate central nervous system axons.
    Gervasi C; Thyagarajan A; Szaro BG
    J Comp Neurol; 2003 Jun; 461(2):262-75. PubMed ID: 12724842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits.
    Beaulieu JM; Robertson J; Julien JP
    Biochem Cell Biol; 1999; 77(1):41-5. PubMed ID: 10426285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of the beta cells of the islets of Langerhans is further questioned by the expression of neuronal intermediate filament proteins, peripherin and NF-L, in the rat insulinoma RIN5F cell line.
    Escurat M; Djabali K; Huc C; Landon F; Bécourt C; Boitard C; Gros F; Portier MM
    Dev Neurosci; 1991; 13(6):424-32. PubMed ID: 1809559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development.
    Uchida N; Kanazawa M; Suzuki Y; Takeda M
    Arch Histol Cytol; 2003 Mar; 66(1):17-25. PubMed ID: 12703550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of cytoskeletal proteins (neurofilaments, peripherin and MAP-tau) in the cochlea of the human fetus.
    Després G; Leger GP; Dahl D; Romand R
    Acta Otolaryngol; 1994 Jul; 114(4):377-81. PubMed ID: 7976309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.