These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 1520841)
1. Chronobiologic response modifiers and breast cancer development: classical background and chronobiologic tasks remaining. Cornélissen G; Halberg F In Vivo; 1992; 6(4):387-402. PubMed ID: 1520841 [TBL] [Abstract][Full Text] [Related]
2. Toward chronobiologic pattern discrimination of the risk of developing breast cancer and other diseases. Hermida Domínguez RC; Halberg F; del Pozo F; Haus E Rev Esp Oncol; 1982; 29(2):199-267. PubMed ID: 6765184 [TBL] [Abstract][Full Text] [Related]
3. Mammary cancer risk: circulating TSH and prolactin, fibrocystic breast disease in chronoepidemiologic perspective. Tarquini B; Benvenuti M; Legnaioli M; Bazzani M; Cagnoni M; Halberg F Cancer Detect Prev; 1981; 4(1-4):525-34. PubMed ID: 7349819 [TBL] [Abstract][Full Text] [Related]
4. Possible linkage between the ability to change the period (tau) of the prolactin and cortisol rhythms in women and breast cancer risk. Lewy H; Haus E; Ashkenazi IE Chronobiol Int; 2007; 24(2):365-81. PubMed ID: 17453854 [TBL] [Abstract][Full Text] [Related]
5. Chronobiology in hematology and immunology. Haus E; Lakatua DJ; Swoyer J; Sackett-Lundeen L Am J Anat; 1983 Dec; 168(4):467-517. PubMed ID: 6364772 [TBL] [Abstract][Full Text] [Related]
6. Human relevance of rodent prolactin-induced non-genotoxic mammary carcinogenesis: prolactin involvement in human breast cancer and significance for toxicology risk assessments. Harvey PW J Appl Toxicol; 2005; 25(3):179-83. PubMed ID: 15856525 [TBL] [Abstract][Full Text] [Related]
7. From experimental units to unique experiments: chronobiologic pilots complement large trials. Halberg F; Cornélissen G; Bingham C; Fujii S; Halberg E In Vivo; 1992; 6(4):403-27. PubMed ID: 1520842 [TBL] [Abstract][Full Text] [Related]
8. Clinical trials: the larger the better? Halberg F; Bingham C; Cornélissen G Chronobiologia; 1993; 20(3-4):193-211. PubMed ID: 8131669 [TBL] [Abstract][Full Text] [Related]
10. Exposure of Sprague-Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,12-dimethylbenz[a]-anthracene model of breast cancer. Thun-Battersby S; Mevissen M; Löscher W Cancer Res; 1999 Aug; 59(15):3627-33. PubMed ID: 10446973 [TBL] [Abstract][Full Text] [Related]
11. Consistency and accuracy of the Medical Subject Headings thesaurus for electronic indexing and retrieval of chronobiologic references. Portaluppi F Chronobiol Int; 2007; 24(6):1213-29. PubMed ID: 18075808 [TBL] [Abstract][Full Text] [Related]
12. Biological response modifiers in breast cancer. Janik JE; Longo DL Compr Ther; 1991 Dec; 17(12):28-31. PubMed ID: 1790662 [No Abstract] [Full Text] [Related]
13. Prolactin and breast skin temperature rhythms in postmenopausal women with primary breast cancer. Wilson DW; Phillips MJ; Holliday HW; Blamey RW; Simpson HW; Pierrepoint CG; Halberg F; Griffiths K Chronobiologia; 1983; 10(1):21-30. PubMed ID: 6851763 [TBL] [Abstract][Full Text] [Related]
14. Circadian periodicity of plasma 17-hydroxycorticosteroids in advanced breast cancer. Singh RK; Singh S; Razdan JL Prog Clin Biol Res; 1987; 227B():335-42. PubMed ID: 3628346 [TBL] [Abstract][Full Text] [Related]
15. Feline breast carcinoma as a pathologic and therapeutic model for human breast cancer. Hahn KA; Bravo L; Avenell JS In Vivo; 1994; 8(5):825-8. PubMed ID: 7727731 [TBL] [Abstract][Full Text] [Related]
16. Potent growth inhibitory activity of zidovudine on cultured human breast cancer cells and rat mammary tumors. Wagner CR; Ballato G; Akanni AO; McIntee EJ; Larson RS; Chang S; Abul-Hajj YJ Cancer Res; 1997 Jun; 57(12):2341-5. PubMed ID: 9192804 [TBL] [Abstract][Full Text] [Related]
17. Secular or circannual effects of placebo and melatonin on murine breast cancer? Wrba H; Dutter A; Sánchez de la Peña S; Wu J; Carandente F; Cornélissen G; Halberg F Prog Clin Biol Res; 1990; 341A():31-40. PubMed ID: 2217247 [No Abstract] [Full Text] [Related]
18. Rhythmic pineal-hypophyseal-adrenal intermodulations ex vivo. Sánchez de la Peña S; Halberg F; Lakatua D; Ungar F Prog Clin Biol Res; 1987; 227A():421-49. PubMed ID: 3037558 [TBL] [Abstract][Full Text] [Related]
19. Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Chen ST; Choo KB; Hou MF; Yeh KT; Kuo SJ; Chang JG Carcinogenesis; 2005 Jul; 26(7):1241-6. PubMed ID: 15790588 [TBL] [Abstract][Full Text] [Related]
20. Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Yang X; Wood PA; Oh EY; Du-Quiton J; Ansell CM; Hrushesky WJ Breast Cancer Res Treat; 2009 Sep; 117(2):423-31. PubMed ID: 18651214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]