BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15208489)

  • 1. Quantification in positron emission tomography for research in pharmacology and drug development.
    Cunningham VJ; Gunn RN; Matthews JC
    Nucl Med Commun; 2004 Jul; 25(7):643-6. PubMed ID: 15208489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification in clinical fluorodeoxyglucose positron emission tomography.
    Hallett WA
    Nucl Med Commun; 2004 Jul; 25(7):647-50. PubMed ID: 15208490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FDG-PET parametric imaging by total variation minimization.
    Guo H; Renaut RA; Chen K; Reiman E
    Comput Med Imaging Graph; 2009 Jun; 33(4):295-303. PubMed ID: 19261438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct reconstruction of kinetic parameter images from dynamic PET data.
    Kamasak ME; Bouman CA; Morris ED; Sauer K
    IEEE Trans Med Imaging; 2005 May; 24(5):636-50. PubMed ID: 15889551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification method in [18F]fluorodeoxyglucose brain positron emission tomography using independent component analysis.
    Su KH; Wu LC; Liu RS; Wang SJ; Chen JC
    Nucl Med Commun; 2005 Nov; 26(11):995-1004. PubMed ID: 16208178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalised spatio-temporal registration framework for dynamic PET data: application to neuroreceptor imaging.
    Jiao J; Schnabel JA; Gunn RN
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 1):211-8. PubMed ID: 24505668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis.
    Naganawa M; Kimura Y; Ishii K; Oda K; Ishiwata K; Matani A
    IEEE Trans Biomed Eng; 2005 Feb; 52(2):201-10. PubMed ID: 15709657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shortened dynamic (18)F-FDG PET.
    Disselhorst JA; Vriens D; de Geus-Oei LF; Oyen WJ; Visser EP
    J Nucl Med; 2011 Aug; 52(8):1330; author reply 1330-1. PubMed ID: 21764799
    [No Abstract]   [Full Text] [Related]  

  • 9. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data.
    Fang YH; Kao T; Liu RS; Wu LC
    Eur J Nucl Med Mol Imaging; 2004 May; 31(5):692-702. PubMed ID: 14740178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of brain glucose metabolism with input function determined from brain PET images by means of Bayesian ICA and MCMC methods.
    Berradja K; Boughanmi N
    Comput Med Imaging Graph; 2012 Dec; 36(8):620-6. PubMed ID: 22884568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images.
    Chen K; Chen X; Renaut R; Alexander GE; Bandy D; Guo H; Reiman EM
    Phys Med Biol; 2007 Dec; 52(23):7055-71. PubMed ID: 18029993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative brain FDG/PET studies using dynamic aortic imaging.
    Dhawan V; Takikawa S; Robeson W; Spetsieris P; Chaly T; Dahl R; Zanzi I; Bandyopadhyay D; Margouleff D; Eidelberg D
    Phys Med Biol; 1994 Sep; 39(9):1475-87. PubMed ID: 15552117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-deoxy-fluorglucose-positron emission tomography imaging of the brain: current clinical applications with emphasis on the dementias.
    Van Heertum RL; Greenstein EA; Tikofsky RS
    Semin Nucl Med; 2004 Oct; 34(4):300-12. PubMed ID: 15493007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted maximum likelihood estimation of PET neuroreceptor occupancy in the absence of a reference region.
    Radua J; Bullich S; Lopez N; Catafau AM
    Med Phys; 2011 May; 38(5):2558-62. PubMed ID: 21776791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral metabolic rate of glucose quantification with the aortic image-derived input function and Patlak method: numerical and patient data evaluation.
    Vanzi E; Berti V; Polito C; Freddi I; Comis G; Rubello D; Sorbi S; Pupi A
    Nucl Med Commun; 2016 Aug; 37(8):849-59. PubMed ID: 27058363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the relationship between interictal electrical source imaging and PET hypometabolism.
    Person C; Koessler L; Louis-Dorr V; Wolf D; Maillard L; Marie PY
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3723-6. PubMed ID: 21096861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies.
    Ishii K; Sasaki H; Kono AK; Miyamoto N; Fukuda T; Mori E
    Eur J Nucl Med Mol Imaging; 2005 Aug; 32(8):959-63. PubMed ID: 15800784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of likelihood estimation in Logan graphical analysis using maximum a posteriori for neuroreceptor PET imaging.
    Shidahara M; Seki C; Naganawa M; Sakata M; Ishikawa M; Ito H; Kanno I; Ishiwata K; Kimura Y
    Ann Nucl Med; 2009 Feb; 23(2):163-71. PubMed ID: 19225940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An update on novel quantitative techniques in the context of evolving whole-body PET imaging.
    Houshmand S; Salavati A; Hess S; Werner TJ; Alavi A; Zaidi H
    PET Clin; 2015 Jan; 10(1):45-58. PubMed ID: 25455879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (18)F-FDG PET and vascular inflammation: time to refine the paradigm?
    Sadeghi MM
    J Nucl Cardiol; 2015 Apr; 22(2):319-24. PubMed ID: 24925623
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.