BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15208656)

  • 41. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3.
    Amano Y; Ishikawa R; Sakatani T; Ichinose J; Sunohara M; Watanabe K; Kage H; Nakajima J; Nagase T; Ohishi N; Takai D
    Biochem Biophys Res Commun; 2015 Feb; 457(3):457-60. PubMed ID: 25596129
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What have we learnt from mouse models of NPM-ALK-induced lymphomagenesis?
    Turner SD; Alexander DR
    Leukemia; 2005 Jul; 19(7):1128-34. PubMed ID: 15902287
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with the variant RNF213-, ATIC- and TPM3-ALK fusions is characterized by copy number gain of the rearranged ALK gene.
    van der Krogt JA; Bempt MV; Ferreiro JF; Mentens N; Jacobs K; Pluys U; Doms K; Geerdens E; Uyttebroeck A; Pierre P; Michaux L; Devos T; Vandenberghe P; Tousseyn T; Cools J; Wlodarska I
    Haematologica; 2017 Sep; 102(9):1605-1616. PubMed ID: 28659337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors.
    Chiarle R; Gong JZ; Guasparri I; Pesci A; Cai J; Liu J; Simmons WJ; Dhall G; Howes J; Piva R; Inghirami G
    Blood; 2003 Mar; 101(5):1919-27. PubMed ID: 12424201
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer.
    Choi YL; Takeuchi K; Soda M; Inamura K; Togashi Y; Hatano S; Enomoto M; Hamada T; Haruta H; Watanabe H; Kurashina K; Hatanaka H; Ueno T; Takada S; Yamashita Y; Sugiyama Y; Ishikawa Y; Mano H
    Cancer Res; 2008 Jul; 68(13):4971-6. PubMed ID: 18593892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors.
    Patel AS; Murphy KM; Hawkins AL; Cohen JS; Long PP; Perlman EJ; Griffin CA
    Cancer Genet Cytogenet; 2007 Jul; 176(2):107-14. PubMed ID: 17656252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma.
    Vishwamitra D; Curry CV; Alkan S; Song YH; Gallick GE; Kaseb AO; Shi P; Amin HM
    Mol Cancer; 2015 Feb; 14():53. PubMed ID: 25884514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein.
    Vishwamitra D; Curry CV; Shi P; Alkan S; Amin HM
    Neoplasia; 2015 Sep; 17(9):742-754. PubMed ID: 26476082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. t(1;2)(q21;p23) and t(2;3)(p23;q21): two novel variant translocations of the t(2;5)(p23;q35) in anaplastic large cell lymphoma.
    Rosenwald A; Ott G; Pulford K; Katzenberger T; Kühl J; Kalla J; Ott MM; Mason DY; Müller-Hermelink HK
    Blood; 1999 Jul; 94(1):362-4. PubMed ID: 10381534
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5).
    Fujimoto J; Shiota M; Iwahara T; Seki N; Satoh H; Mori S; Yamamoto T
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4181-6. PubMed ID: 8633037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression of the ALK protein by anaplastic large-cell lymphomas correlates with high proliferative activity.
    Leoncini L; Lazzi S; Scano D; Mura A; Onida A; Massarelli G; Tosi P; Barbini P; Cevenini G; Massai MR; Pileri S; Falini B; Giordano A; Kraft R; Laissue JA; Cottier H
    Int J Cancer; 2000 Jun; 86(6):777-81. PubMed ID: 10842190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The potent oncogene NPM-ALK mediates malignant transformation of normal human CD4(+) T lymphocytes.
    Zhang Q; Wei F; Wang HY; Liu X; Roy D; Xiong QB; Jiang S; Medvec A; Danet-Desnoyers G; Watt C; Tomczak E; Kalos M; Riley JL; Wasik MA
    Am J Pathol; 2013 Dec; 183(6):1971-80. PubMed ID: 24404580
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Effect of Tyrosine Phosphorylation Sites of Oncogenic Protein NPM-ALK on Cell Cycle and Its Related Mechanisms].
    Hu LL; Zhen H; Zhang XN; Zhou L; Amin HM; Shi P
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2016 Aug; 24(4):1201-5. PubMed ID: 27531800
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm.
    Tokuda K; Eguchi-Ishimae M; Yagi C; Kawabe M; Moritani K; Niiya T; Tauchi H; Ishii E; Eguchi M
    Genes Chromosomes Cancer; 2014 Jan; 53(1):78-89. PubMed ID: 24142740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The cytoplasmic truncated receptor tyrosine kinase ALK homodimer immortalizes and cooperates with ras in cellular transformation.
    Simonitsch I; Polgar D; Hajek M; Duchek P; Skrzypek B; Fassl S; Lamprecht A; Schmidt G; Krupitza G; Cerni C
    FASEB J; 2001 Jun; 15(8):1416-8. PubMed ID: 11387242
    [No Abstract]   [Full Text] [Related]  

  • 56. ALK-mediated Na+/H+ exchanger-dependent intracellular alkalinization: does it matter for oncogenesis?
    Turturro F; Driscoll M; Friday E; Welbourne T
    Haematologica; 2007 May; 92(5):706-7. PubMed ID: 17488701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Malignant high-grade histological transformation of inflammatory myofibroblastic tumour associated with amplification of TPM3-ALK.
    Zhang H; Erickson-Johnson M; Wang X; Bahrami A; Medeiros F; Lonzo ML; Oliveira AM
    J Clin Pathol; 2010 Nov; 63(11):1040-1. PubMed ID: 20870660
    [No Abstract]   [Full Text] [Related]  

  • 58.
    Xiao A; Shahmarvand N; Nagy A; Kumar J; Van Ziffle J; Devine P; Huang F; Lezama L; Li P; Ohgami RS
    Front Oncol; 2023; 13():1174606. PubMed ID: 37305584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology.
    Hallberg B; Palmer RH
    Nat Rev Cancer; 2013 Oct; 13(10):685-700. PubMed ID: 24060861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling.
    Engelman JA; Zejnullahu K; Mitsudomi T; Song Y; Hyland C; Park JO; Lindeman N; Gale CM; Zhao X; Christensen J; Kosaka T; Holmes AJ; Rogers AM; Cappuzzo F; Mok T; Lee C; Johnson BE; Cantley LC; Jänne PA
    Science; 2007 May; 316(5827):1039-43. PubMed ID: 17463250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.