These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15209245)

  • 1. Schematic eye with a gradient-index lens and aspheric surfaces.
    Siedlecki D; Kasprzak H; Pierscionek BK
    Opt Lett; 2004 Jun; 29(11):1197-9. PubMed ID: 15209245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The gradient index and spherical aberration of the lens of the human eye.
    Smith G; Atchison DA
    Ophthalmic Physiol Opt; 2001 Jul; 21(4):317-26. PubMed ID: 11430626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. simEye: Computer-based simulation of visual perception under various eye defects using Zernike polynomials.
    Fink W; Micol D
    J Biomed Opt; 2006; 11(5):054011. PubMed ID: 17092160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third-order aberrations in GRIN crystalline lens: a new method based on axial and field rays.
    Río AD; Gómez-Reino C; Flores-Arias MT
    J Optom; 2015; 8(2):77-85. PubMed ID: 25444647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The change of spherical aberration during accommodation and its effect on the accommodation response.
    López-Gil N; Fernández-Sánchez V
    J Vis; 2010 Nov; 10(13):12. PubMed ID: 21075837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted Zernike expansion with applications to the optical aberration of the human eye.
    Nam J; Rubinstein J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Sep; 22(9):1709-16. PubMed ID: 16211797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spherical aberration of the anterior and posterior surfaces of the human cornea.
    Sicam VA; Dubbelman M; van der Heijde RG
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):544-9. PubMed ID: 16539049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of the holographic multivergence target in the subjective measurement of spherical refractive error and amplitude of accommodation of the human eye.
    Avudainayagam KV; Avudainayagam CS; Nguyen N; Chiam KW; Truong C
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3037-44. PubMed ID: 17912293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystalline lens gradient refractive index distribution in the guinea pig.
    de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S
    Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the human lens gradient-index profile in the compensation of third-order ocular aberrations.
    Díaz JA; Fernández-Dorado J; Sorroche F
    J Biomed Opt; 2012 Jul; 17(7):075003. PubMed ID: 22894475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of compensation of aberrations in the human eye.
    Tabernero J; Benito A; Alcón E; Artal P
    J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3274-83. PubMed ID: 17912320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct transformation of Zernike eye aberration coefficients between scaled, rotated, and/or displaced pupils.
    Bará S; Arines J; Ares J; Prado P
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2061-6. PubMed ID: 16912732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ray tracing through a schematic eye containing second-order (quadric) surfaces using 4 x 4 matrix notation.
    Langenbucher A; Viestenz A; Viestenz A; Brünner H; Seitz B
    Ophthalmic Physiol Opt; 2006 Mar; 26(2):180-8. PubMed ID: 16460318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The equivalent refractive index of the crystalline lens in childhood.
    Mutti DO; Zadnik K; Adams AJ
    Vision Res; 1995 Jun; 35(11):1565-73. PubMed ID: 7667914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of special eye models for investigation of chromatic and higher-order aberrations of eyes.
    Zhai Y; Wang Y; Wang Z; Liu Y; Zhang L; He Y; Chang S
    Biomed Mater Eng; 2014; 24(6):3073-81. PubMed ID: 25227016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements.
    Rosales P; Marcos S
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):509-20. PubMed ID: 16539046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for predicting the optical performance of the eye in refractive surgery.
    Patel S; Marshall J; Fitzke FW
    Refract Corneal Surg; 1993; 9(5):366-75. PubMed ID: 8241041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.
    Wu Y; Thibos LN; Candy TR
    Ophthalmic Physiol Opt; 2018 Jul; 38(4):432-446. PubMed ID: 29736941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.