BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15209347)

  • 1. Microrobots for in vitro fertilization applications.
    Boukallel M; Gauthier M; Piat E; Abadie J; Roux C
    Cell Mol Biol (Noisy-le-grand); 2004 May; 50(3):267-74. PubMed ID: 15209347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart microrobots for mechanical cell characterization and cell convoying.
    Boukallel M; Gauthier M; Dauge M; Piat E; Abadie J
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1536-40. PubMed ID: 17694877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.
    Sakaki K; Dechev N; Burke RD; Park EJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2064-74. PubMed ID: 19605307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric driven non-toxic injector for automated cell manipulation.
    Huang HB; Su H; Chen HY; Mills JK
    Stud Health Technol Inform; 2011; 163():231-5. PubMed ID: 21335794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust computer-controlled system for intracytoplasmic sperm injection and subsequent cell electro-activation.
    Tan KK; Huang S; Tang KZ
    Int J Med Robot; 2009 Mar; 5(1):85-98. PubMed ID: 19170131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a piezo-actuated micro-teleoperation system for cell manipulation.
    Zareinejad M; Rezaei SM; Abdullah A; Shiry Ghidary S
    Int J Med Robot; 2009 Mar; 5(1):66-76. PubMed ID: 19177336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High throughput easy microinjection with a single-cell manipulation supporting robot.
    Matsuoka H; Komazaki T; Mukai Y; Shibusawa M; Akane H; Chaki A; Uetake N; Saito M
    J Biotechnol; 2005 Mar; 116(2):185-94. PubMed ID: 15664082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal piezo-driven ultrasonic cell microinjection system.
    Huang H; Mills JK; Lu C; Sun D
    Biomed Microdevices; 2011 Aug; 13(4):743-52. PubMed ID: 21573928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical sensing of the penetration of various nanoneedles into a living cell using atomic force microscopy.
    Obataya I; Nakamura C; Han S; Nakamura N; Miyake J
    Biosens Bioelectron; 2005 Feb; 20(8):1652-5. PubMed ID: 15626623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.
    Li G; Xi N; Wang DH
    Nanomedicine; 2005 Mar; 1(1):31-40. PubMed ID: 17292055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autologous mature follicular fluid: its role in in vitro maturation of human cumulus-removed oocytes.
    Zhu XM; Zhu YM; Xu CM; Qian YL; Jin F; Huang HF
    Fertil Steril; 2008 Oct; 90(4):1094-102. PubMed ID: 18001728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechatronic design of haptic forceps for robotic surgery.
    Rizun P; Gunn D; Cox B; Sutherland G
    Int J Med Robot; 2006 Dec; 2(4):341-9. PubMed ID: 17520653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New technology for cellular piercing: rotationally oscillating mu-injector, description and validation tests.
    Ergenc AF; Olgac N
    Biomed Microdevices; 2007 Dec; 9(6):885-91. PubMed ID: 17659446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectrophoretic oocyte selection chip for in vitro fertilization.
    Choi W; Kim JS; Lee DH; Lee KK; Koo DB; Park JK
    Biomed Microdevices; 2008 Jun; 10(3):337-45. PubMed ID: 18071907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes.
    Wongsrikeao P; Kaneshige Y; Ooki R; Taniguchi M; Agung B; Nii M; Otoi T
    Reprod Domest Anim; 2005 Apr; 40(2):166-70. PubMed ID: 15819969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool.
    Wacogne B; Pieralli C; Roux C; Gharbi T
    Biomed Microdevices; 2008 Jun; 10(3):411-9. PubMed ID: 18165902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A system for high-speed microinjection of adherent cells.
    Wang W; Sun Y; Zhang M; Anderson R; Langille L; Chan W
    Rev Sci Instrum; 2008 Oct; 79(10):104302. PubMed ID: 19044735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel articulator that reproduced jaw movement with six-degree-of-freedom.
    Nishigawa K; Satsuma T; Shigemoto S; Bando E; Nakano M; Ishida O
    Med Eng Phys; 2007 Jun; 29(5):615-9. PubMed ID: 17027315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.
    Xie Y; Zhou Y; Lin Y; Wang L; Xi W
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27058545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conventional in vitro fertilization versus intracytoplasmic sperm injection in patients with borderline semen: a randomized study using sibling oocytes.
    van der Westerlaken L; Naaktgeboren N; Verburg H; Dieben S; Helmerhorst FM
    Fertil Steril; 2006 Feb; 85(2):395-400. PubMed ID: 16595217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.