BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15209497)

  • 1. Synthetic cross-links arrest the C-terminal region of the relaxin-like factor in an active conformation.
    Büllesbach EE; Schwabe C
    Biochemistry; 2004 Jun; 43(25):8021-8. PubMed ID: 15209497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan B27 in the relaxin-like factor (RLF) is crucial for RLF receptor-binding.
    Büllesbach EE; Schwabe C
    Biochemistry; 1999 Mar; 38(10):3073-8. PubMed ID: 10074360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "hot wires" of the relaxin-like factor (Insl3).
    Schwabe C; Büllesbach EE
    Ann N Y Acad Sci; 2009 Apr; 1160():93-8. PubMed ID: 19416166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and pharmacological evaluation of cyclic mimetics of the insulin-like peptide 3 (INSL3) B-chain.
    Shabanpoor F; Bathgate RA; Hossain MA; Giannakis E; Wade JD; Hughes RA
    J Pept Sci; 2007 Feb; 13(2):113-20. PubMed ID: 17120268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function.
    Qi T; Christopoulos G; Bailey RJ; Christopoulos A; Sexton PM; Hay DL
    Mol Pharmacol; 2008 Oct; 74(4):1059-71. PubMed ID: 18593822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity.
    Kostenis E; Martini L; Ellis J; Waldhoer M; Heydorn A; Rosenkilde MM; Norregaard PK; Jorgensen R; Whistler JL; Milligan G
    J Pharmacol Exp Ther; 2005 Apr; 313(1):78-87. PubMed ID: 15615862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxin-3, INSL5, and their receptors.
    Liu C; Lovenberg TW
    Results Probl Cell Differ; 2008; 46():213-37. PubMed ID: 18236022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetes-associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor.
    Xu B; Hu SQ; Chu YC; Huang K; Nakagawa SH; Whittaker J; Katsoyannis PG; Weiss MA
    Biochemistry; 2004 Jul; 43(26):8356-72. PubMed ID: 15222748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction of relaxin properties into other hormones of insulin-like structure.
    Büllesbach EE; Schwabe C
    SAAS Bull Biochem Biotechnol; 1996; 9():63-8. PubMed ID: 8652134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A critical role for the short intracellular C terminus in receptor activity-modifying protein function.
    Udawela M; Christopoulos G; Morfis M; Christopoulos A; Ye S; Tilakaratne N; Sexton PM
    Mol Pharmacol; 2006 Nov; 70(5):1750-60. PubMed ID: 16912219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxin family peptide receptor (RXFP1) coupling to G(alpha)i3 involves the C-terminal Arg752 and localization within membrane Raft Microdomains.
    Halls ML; van der Westhuizen ET; Wade JD; Evans BA; Bathgate RA; Summers RJ
    Mol Pharmacol; 2009 Feb; 75(2):415-28. PubMed ID: 19029286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diverse functional motifs within the three intracellular loops of the CGRP1 receptor.
    Conner AC; Simms J; Conner MT; Wootten DL; Wheatley M; Poyner DR
    Biochemistry; 2006 Oct; 45(43):12976-85. PubMed ID: 17059214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mode of interaction of the relaxin-like factor (RLF) with the leucine-rich repeat G protein-activated receptor 8.
    Büllesbach EE; Schwabe C
    J Biol Chem; 2006 Sep; 281(36):26136-43. PubMed ID: 16844694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical synthesis and biological activity of rat INSL3.
    Smith KJ; Wade JD; Claasz AA; Otvos L; Temelcos C; Kubota Y; Hutson JM; Tregear GW; Bathgate RA
    J Pept Sci; 2001 Sep; 7(9):495-501. PubMed ID: 11587188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2.
    Zhang S; Hughes RA; Bathgate RA; Shabanpoor F; Hossain MA; Lin F; van Lierop B; Robinson AJ; Wade JD
    Peptides; 2010 Sep; 31(9):1730-6. PubMed ID: 20570702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors.
    Udawela M; Christopoulos G; Tilakaratne N; Christopoulos A; Albiston A; Sexton PM
    Mol Pharmacol; 2006 Jun; 69(6):1984-9. PubMed ID: 16531504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8).
    Halls ML; Bond CP; Sudo S; Kumagai J; Ferraro T; Layfield S; Bathgate RA; Summers RJ
    J Pharmacol Exp Ther; 2005 May; 313(2):677-87. PubMed ID: 15649866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms.
    Halls ML; Bathgate RA; Summers RJ
    Mol Pharmacol; 2006 Jul; 70(1):214-26. PubMed ID: 16569707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the receptor, the ligand, and the cell in the signal transduction pathways utilized by the relaxin family peptide receptors 1-3.
    Summers RJ; Bathgate RA; Wade JD; van der Westhuizen ET; Halls ML
    Ann N Y Acad Sci; 2009 Apr; 1160():99-104. PubMed ID: 19416167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse relaxin: synthesis and biological activity of the first relaxin with an unusual crosslinking pattern.
    Büllesbach EE; Schwabe C
    Biochem Biophys Res Commun; 1993 Oct; 196(1):311-9. PubMed ID: 8216305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.