BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 15210071)

  • 1. Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies.
    Ma XH; Zhang XY; Tan JJ; Chen WZ; Wang CX
    Acta Pharmacol Sin; 2004 Jul; 25(7):950-8. PubMed ID: 15210071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors.
    Kuo CL; Assefa H; Kamath S; Brzozowski Z; Slawinski J; Saczewski F; Buolamwini JK; Neamati N
    J Med Chem; 2004 Jan; 47(2):385-99. PubMed ID: 14711310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors.
    Leonard JT; Roy K
    Eur J Med Chem; 2008 Jan; 43(1):81-92. PubMed ID: 17452064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CoMFA and CoMSIA 3D-QSAR studies on quionolone caroxylic acid derivatives inhibitors of HIV-1 integrase.
    Lu P; Wei X; Zhang R
    Eur J Med Chem; 2010 Aug; 45(8):3413-9. PubMed ID: 20488589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies.
    Hou T; Zhu L; Chen L; Xu X
    J Chem Inf Comput Sci; 2003; 43(1):273-87. PubMed ID: 12546563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster analysis and three-dimensional QSAR studies of HIV-1 integrase inhibitors.
    Yuan H; Parrill A
    J Mol Graph Model; 2005 Jan; 23(4):317-28. PubMed ID: 15670952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking-based 3D-QSAR study of HIV-1 integrase inhibitors.
    Gupta P; Roy N; Garg P
    Eur J Med Chem; 2009 Nov; 44(11):4276-87. PubMed ID: 19647906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-QSAR studies of quinoline ring derivatives as HIV-1 integrase inhibitors.
    Sun XH; Guan JQ; Tan JJ; Liu C; Wang CX
    SAR QSAR Environ Res; 2012 Oct; 23(7-8):683-703. PubMed ID: 22991976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional quantitative structure: activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA.
    Nunthaboot N; Tonmunphean S; Parasuk V; Wolschann P; Kokpol S
    Eur J Med Chem; 2006 Dec; 41(12):1359-72. PubMed ID: 17002889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site.
    Neamati N; Hong H; Owen JM; Sunder S; Winslow HE; Christensen JL; Zhao H; Burke TR; Milne GW; Pommier Y
    J Med Chem; 1998 Aug; 41(17):3202-9. PubMed ID: 9703465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors.
    Deng J; Lee KW; Sanchez T; Cui M; Neamati N; Briggs JM
    J Med Chem; 2005 Mar; 48(5):1496-505. PubMed ID: 15743192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors.
    Kawasuji T; Fuji M; Yoshinaga T; Sato A; Fujiwara T; Kiyama R
    Bioorg Med Chem; 2006 Dec; 14(24):8420-9. PubMed ID: 17005407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: Analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations.
    Durdagi S; Mavromoustakos T; Chronakis N; Papadopoulos MG
    Bioorg Med Chem; 2008 Dec; 16(23):9957-74. PubMed ID: 18996019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors.
    Barreca ML; Ferro S; Rao A; De Luca L; Zappalà M; Monforte AM; Debyser Z; Witvrouw M; Chimirri A
    J Med Chem; 2005 Nov; 48(22):7084-8. PubMed ID: 16250669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel HIV-1 integrase inhibitors using shape-based screening, QSAR, and docking approach.
    Gupta P; Garg P; Roy N
    Chem Biol Drug Des; 2012 May; 79(5):835-49. PubMed ID: 22233531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A platform for designing HIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIV integrase inhibitor and modeling of hydrophilic and hydrophobic pharmacophores.
    Kawasuji T; Yoshinaga T; Sato A; Yodo M; Fujiwara T; Kiyama R
    Bioorg Med Chem; 2006 Dec; 14(24):8430-45. PubMed ID: 17010623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of novel diketoacid-containing ferrocene inhibitors of HIV-1 integrase.
    da Silva CH; Del Ponte G; Neto AF; Taft CA
    Bioorg Chem; 2005 Aug; 33(4):274-84. PubMed ID: 16023487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-QSAR of human immunodeficiency virus (I) protease inhibitors. III. Interpretation of CoMFA results.
    Opera TI; Waller CL; Marshall GR
    Drug Des Discov; 1994 Jul; 12(1):29-51. PubMed ID: 7578806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Docking-based CoMFA and CoMSIA study of azaindole carboxylic acid derivatives as promising HIV-1 integrase inhibitors.
    Yu S; Wang P; Li Y; Liu Y; Zhao G
    SAR QSAR Environ Res; 2013 Oct; 24(10):819-39. PubMed ID: 23988186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray and molecular modelling in fragment-based design of three small quinoline scaffolds for HIV integrase inhibitors.
    Majerz-Maniecka K; Musiol R; Skórska-Stania A; Tabak D; Mazur P; Oleksyn BJ; Polanski J
    Bioorg Med Chem; 2011 Mar; 19(5):1606-12. PubMed ID: 21316973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.