These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15210118)

  • 1. Slow unfolding explains high stability of thermostable ferredoxins: common mechanism governing thermostability?
    Wittung-Stafshede P
    Biochim Biophys Acta; 2004 Jul; 1700(1):1-4. PubMed ID: 15210118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High thermal and chemical stability of Thermus thermophilus seven-iron ferredoxin. Linear clusters form at high pH on polypeptide unfolding.
    Griffin S; Higgins CL; Soulimane T; Wittung-Stafshede P
    Eur J Biochem; 2003 Dec; 270(23):4736-43. PubMed ID: 14622262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High stability of a ferredoxin from the hyperthermophilic archaeon A. ambivalens: involvement of electrostatic interactions and cofactors.
    Moczygemba C; Guidry J; Jones KL; Gomes CM; Teixeira M; Wittung-Stafshede P
    Protein Sci; 2001 Aug; 10(8):1539-48. PubMed ID: 11468351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of linear three-iron clusters in Aquifex aeolicus two-iron ferredoxins: effect of protein-unfolding speed.
    Higgins CL; Wittung-Stafshede P
    Arch Biochem Biophys; 2004 Jul; 427(2):154-63. PubMed ID: 15196989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relative contribution of ionic interactions over iron-sulfur clusters to ferredoxin stability.
    Leal SS; Gomes CM
    Biochim Biophys Acta; 2008 Nov; 1784(11):1596-600. PubMed ID: 18534203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow unfolding and refolding kinetics of the mesophilic Rop wild-type protein in the transition range.
    Rosengarth A; Rösgen J; Hinz HJ
    Eur J Biochem; 1999 Sep; 264(3):989-95. PubMed ID: 10491149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of salt-dependent unfolding of [2Fe-2S] ferredoxin of Halobacterium salinarum.
    Bandyopadhyay AK; Krishnamoorthy G; Padhy LC; Sonawat HM
    Extremophiles; 2007 Jul; 11(4):615-25. PubMed ID: 17406782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do chemical denaturants affect the mechanical folding and unfolding of proteins?
    Cao Y; Li H
    J Mol Biol; 2008 Jan; 375(1):316-24. PubMed ID: 18021802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding and association of thermophilic dimeric and trimeric DsrEFH proteins: Tm0979 and Mth1491.
    Galvagnion C; Smith MT; Broom A; Vassall KA; Meglei G; Gaspar JA; Stathopulos PB; Cheyne B; Meiering EM
    Biochemistry; 2009 Apr; 48(13):2891-906. PubMed ID: 19290646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a linear [3Fe-4S] cluster in a seven-iron ferredoxin triggered by polypeptide unfolding.
    Jones K; Gomes CM; Huber H; Teixeira M; Wittung-Stafshede P
    J Biol Inorg Chem; 2002 Apr; 7(4-5):357-62. PubMed ID: 11941493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exceptional stability of a [2Fe-2S] ferredoxin from hyperthermophilic bacterium Aquifex aeolicus.
    Higgins CL; Meyer J; Wittung-Stafshede P
    Biochim Biophys Acta; 2002 Sep; 1599(1-2):82-9. PubMed ID: 12479408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site.
    Rocha R; Leal SS; Teixeira VH; Regalla M; Huber H; Baptista AM; Soares CM; Gomes CM
    Biochemistry; 2006 Aug; 45(34):10376-84. PubMed ID: 16922514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependent interactions and the stability and folding kinetics of the N-terminal domain of L9. Electrostatic interactions are only weakly formed in the transition state for folding.
    Luisi DL; Raleigh DP
    J Mol Biol; 2000 Jun; 299(4):1091-100. PubMed ID: 10843860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium and kinetic stability of a hyperthermophilic protein, O6-methylguanine-DNA methyltransferase under various extreme conditions.
    Nishikori S; Shiraki K; Okanojo M; Imanaka T; Takagi M
    J Biochem; 2004 Oct; 136(4):503-8. PubMed ID: 15625320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow unfolding of monomeric proteins from hyperthermophiles with reversible unfolding.
    Mukaiyama A; Takano K
    Int J Mol Sci; 2009 Mar; 10(3):1369-1385. PubMed ID: 19399254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic role of electrostatic interactions in the unfolding of hyperthermophilic and mesophilic rubredoxins.
    Cavagnero S; Debe DA; Zhou ZH; Adams MW; Chan SI
    Biochemistry; 1998 Mar; 37(10):3369-76. PubMed ID: 9521657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of structural peculiarities of onconase to its high stability and folding kinetics.
    Arnold U; Schulenburg C; Schmidt D; Ulbrich-Hofmann R
    Biochemistry; 2006 Mar; 45(11):3580-7. PubMed ID: 16533040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin.
    Sivaraman T; Arrington CB; Robertson AD
    Nat Struct Biol; 2001 Apr; 8(4):331-3. PubMed ID: 11276253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.