These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15210290)

  • 1. Two-object attentional interference depends on attentional set.
    López M; Rodríguez V; Valdés-Sosa M
    Int J Psychophysiol; 2004 Jul; 53(2):127-34. PubMed ID: 15210290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials.
    Khoe W; Mitchell JF; Reynolds JH; Hillyard SA
    Vision Res; 2005 Nov; 45(24):3004-14. PubMed ID: 16153678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity.
    Paradis AL; Droulez J; Cornilleau-Pérès V; Poline JB
    Neuroimage; 2008 Dec; 43(4):736-47. PubMed ID: 18805496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking the location of visuospatial attention in a contingent capture paradigm.
    Leblanc E; Prime DJ; Jolicoeur P
    J Cogn Neurosci; 2008 Apr; 20(4):657-71. PubMed ID: 18052780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of negative attentional set upon target processing in RSVP: an ERP study.
    Zhang D; Zhou X; Martens S
    Neuropsychologia; 2009 Oct; 47(12):2604-14. PubMed ID: 19465037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention.
    Muller-Gass A; Macdonald M; Schröger E; Sculthorpe L; Campbell K
    Brain Res; 2007 Sep; 1170():71-8. PubMed ID: 17692834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective attention to specific features within objects: behavioral and electrophysiological evidence.
    Nobre AC; Rao A; Chelazzi L
    J Cogn Neurosci; 2006 Apr; 18(4):539-61. PubMed ID: 16768359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing capacity in chronic pain patients: a visual event-related potentials study.
    Veldhuijzen DS; Kenemans JL; van Wijck AJ; Olivier B; Kalkman CJ; Volkerts ER
    Pain; 2006 Mar; 121(1-2):60-8. PubMed ID: 16480825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic versus contingent mechanisms of sensory-driven neural biasing and reflexive attention.
    Hopfinger JB; Ries AJ
    J Cogn Neurosci; 2005 Aug; 17(8):1341-52. PubMed ID: 16197688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of visuospatial attentional load on the processing of irrelevant acoustic distractors.
    Zhang P; Chen X; Yuan P; Zhang D; He S
    Neuroimage; 2006 Nov; 33(2):715-24. PubMed ID: 16956775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Top-down directed attention to stimulus features and attentional allocation to bottom-up deviations.
    Sawaki R; Katayama J
    J Vis; 2008 Nov; 8(15):4.1-8. PubMed ID: 19146288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory and visual capture during focused visual attention.
    Koelewijn T; Bronkhorst A; Theeuwes J
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1303-15. PubMed ID: 19803638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attention modulates perception of transparent motion.
    Felisberti FM; Zanker JM
    Vision Res; 2005 Sep; 45(19):2587-99. PubMed ID: 16022880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the Mismatch Negativity.
    Muller-Gass A; Stelmack RM; Campbell KB
    Brain Res; 2006 Mar; 1078(1):112-30. PubMed ID: 16497283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention-deficit hyperactivity disorder involves differential cortical processing in a visual spatial attention paradigm.
    López V; López-Calderón J; Ortega R; Kreither J; Carrasco X; Rothhammer P; Rothhammer F; Rosas R; Aboitiz F
    Clin Neurophysiol; 2006 Nov; 117(11):2540-8. PubMed ID: 17000133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Danger is worse when it moves: neural and behavioral indices of enhanced attentional capture by dynamic threatening stimuli.
    Carretié L; Hinojosa JA; López-Martín S; Albert J; Tapia M; Pozo MA
    Neuropsychologia; 2009 Jan; 47(2):364-9. PubMed ID: 18835285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Object-based attention is multisensory: co-activation of an object's representations in ignored sensory modalities.
    Molholm S; Martinez A; Shpaner M; Foxe JJ
    Eur J Neurosci; 2007 Jul; 26(2):499-509. PubMed ID: 17650120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attention modulates responses to motion reversals in human visual cortex.
    Tata MS; Mason AL; Sutherland RJ
    Neuroreport; 2007 Aug; 18(13):1361-5. PubMed ID: 17762713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual load affects spatial and nonspatial visual selection processes: an event-related brain potential study.
    Barnhardt J; Ritter W; Gomes H
    Neuropsychologia; 2008; 46(7):2071-8. PubMed ID: 18355882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.