BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15210687)

  • 1. Structural insights into the Thermus thermophilus ADP-ribose pyrophosphatase mechanism via crystal structures with the bound substrate and metal.
    Yoshiba S; Ooga T; Nakagawa N; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S; Masui R
    J Biol Chem; 2004 Aug; 279(35):37163-74. PubMed ID: 15210687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism of the Thermus thermophilus ADP-ribose pyrophosphatase from mutational and kinetic studies.
    Ooga T; Yoshiba S; Nakagawa N; Kuramitsu S; Masui R
    Biochemistry; 2005 Jul; 44(26):9320-9. PubMed ID: 15981998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overproduction, crystallization and preliminary diffraction data of ADP-ribose pyrophosphatase from Thermus thermophilus HB8.
    Yoshiba S; Nakagawa N; Masui R; Shibata T; Inoue Y; Yokoyama S; Kuramitsu S
    Acta Crystallogr D Biol Crystallogr; 2003 Oct; 59(Pt 10):1840-2. PubMed ID: 14501132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for different substrate specificities of two ADP-ribose pyrophosphatases from Thermus thermophilus HB8.
    Wakamatsu T; Nakagawa N; Kuramitsu S; Masui R
    J Bacteriol; 2008 Feb; 190(3):1108-17. PubMed ID: 18039767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase.
    Gabelli SB; Bianchet MA; Ohnishi Y; Ichikawa Y; Bessman MJ; Amzel LM
    Biochemistry; 2002 Jul; 41(30):9279-85. PubMed ID: 12135348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.
    Furuike Y; Akita Y; Miyahara I; Kamiya N
    Biochemistry; 2016 Mar; 55(12):1801-12. PubMed ID: 26979298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
    Gabelli SB; Bianchet MA; Bessman MJ; Amzel LM
    Nat Struct Biol; 2001 May; 8(5):467-72. PubMed ID: 11323725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of human NUDT5 reveal insights into the structural basis of the substrate specificity.
    Zha M; Zhong C; Peng Y; Hu H; Ding J
    J Mol Biol; 2006 Dec; 364(5):1021-33. PubMed ID: 17052728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and preliminary neutron diffraction studies of ADP-ribose pyrophosphatase-I from Thermus thermophilus HB8.
    Okazaki N; Adachi M; Tamada T; Kurihara K; Ooga T; Kamiya N; Kuramitsu S; Kuroki R
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Jan; 68(Pt 1):49-52. PubMed ID: 22232170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis.
    Kang LW; Gabelli SB; Cunningham JE; O'Handley SF; Amzel LM
    Structure; 2003 Aug; 11(8):1015-23. PubMed ID: 12906832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Nudix hydrolase Ndx1 from Thermus thermophilus HB8 is a diadenosine hexaphosphate hydrolase with a novel activity.
    Iwai T; Kuramitsu S; Masui R
    J Biol Chem; 2004 May; 279(21):21732-9. PubMed ID: 15024014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the 2'-5' RNA ligase from Thermus thermophilus HB8.
    Kato M; Shirouzu M; Terada T; Yamaguchi H; Murayama K; Sakai H; Kuramitsu S; Yokoyama S
    J Mol Biol; 2003 Jun; 329(5):903-11. PubMed ID: 12798681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel fluorometric assay for ADP-ribose pyrophosphatase activity.
    Song EK; Park HJ; Kim JS; Lee HH; Kim UH; Han MK
    J Biochem Biophys Methods; 2005 Jun; 63(3):161-9. PubMed ID: 15967507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of NUDT5, an ADP-ribose pyrophosphatase, by nitric oxide-mediated ADP-ribosylation.
    Yu HN; Song EK; Yoo SM; Lee YR; Han MK; Yim CY; Kwak JY; Kim JS
    Biochem Biophys Res Commun; 2007 Mar; 354(3):764-8. PubMed ID: 17261271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of monofunctional histidinol phosphate phosphatase from Thermus thermophilus HB8.
    Omi R; Goto M; Miyahara I; Manzoku M; Ebihara A; Hirotsu K
    Biochemistry; 2007 Nov; 46(44):12618-27. PubMed ID: 17929834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition.
    Pourfarjam Y; Ventura J; Kurinov I; Cho A; Moss J; Kim IK
    J Biol Chem; 2018 Aug; 293(32):12350-12359. PubMed ID: 29907568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerization of ADP-ribose pyrophosphatase: conversion mechanism of Mg(2+)-dependent ADP-ribose pyrophosphatase into Mg(2+)-independent form.
    Kim DK; Kim JH; Song EK; Han MK; Kim JS
    Arch Pharm Res; 2003 Oct; 26(10):826-31. PubMed ID: 14609131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional analysis of
    Zapata-Pérez R; Gil-Ortiz F; Martínez-Moñino AB; García-Saura AG; Juanhuix J; Sánchez-Ferrer Á
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional NMN adenylyltransferase/ADP-ribose pyrophosphatase: structure and function in bacterial NAD metabolism.
    Huang N; Sorci L; Zhang X; Brautigam CA; Li X; Raffaelli N; Magni G; Grishin NV; Osterman AL; Zhang H
    Structure; 2008 Feb; 16(2):196-209. PubMed ID: 18275811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.