BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 15210969)

  • 1. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro.
    Shin JH; Gardel ML; Mahadevan L; Matsudaira P; Weitz DA
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9636-41. PubMed ID: 15210969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive and active microrheology for cross-linked F-actin networks in vitro.
    Lee H; Ferrer JM; Nakamura F; Lang MJ; Kamm RD
    Acta Biomater; 2010 Apr; 6(4):1207-18. PubMed ID: 19883801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks.
    Schmoller KM; Lieleg O; Bausch AR
    Biophys J; 2009 Jul; 97(1):83-9. PubMed ID: 19580746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and multiple-particle tracking microheterogeneity of alpha-actinin-cross-linked actin filament networks.
    Tseng Y; Wirtz D
    Biophys J; 2001 Sep; 81(3):1643-56. PubMed ID: 11509377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-linking molecules modify composite actin networks independently.
    Schmoller KM; Lieleg O; Bausch AR
    Phys Rev Lett; 2008 Sep; 101(11):118102. PubMed ID: 18851335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mechanical flow for actin network organization.
    Kang B; Jo S; Baek J; Nakamura F; Hwang W; Lee H
    Acta Biomater; 2019 May; 90():217-224. PubMed ID: 30928733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallographic conformers of actin in a biologically active bundle of filaments.
    Cong Y; Topf M; Sali A; Matsudaira P; Dougherty M; Chiu W; Schmid MF
    J Mol Biol; 2008 Jan; 375(2):331-6. PubMed ID: 18022194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 13-A map of the actin-scruin filament from the limulus acrosomal process.
    Owen C; DeRosier D
    J Cell Biol; 1993 Oct; 123(2):337-44. PubMed ID: 8408217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of dynamically cross-linked actin networks: Morphology, rheology, and hydrodynamic interactions.
    Maxian O; Peláez RP; Mogilner A; Donev A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009240. PubMed ID: 34871298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants.
    Lieleg O; Schmoller KM; Purdy Drew KR; Claessens MM; Semmrich C; Zheng L; Bartles JR; Bausch AR
    Chemphyschem; 2009 Nov; 10(16):2813-7. PubMed ID: 19780097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links.
    Lieleg O; Schmoller KM; Claessens MM; Bausch AR
    Biophys J; 2009 Jun; 96(11):4725-32. PubMed ID: 19486695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin.
    Xu J; Tseng Y; Wirtz D
    J Biol Chem; 2000 Nov; 275(46):35886-92. PubMed ID: 10954703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the actin cross-linking properties of the scruin-calmodulin complex from the acrosomal process of Limulus sperm.
    Sanders MC; Way M; Sakai J; Matsudaira P
    J Biol Chem; 1996 Feb; 271(5):2651-7. PubMed ID: 8576236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
    Bidone TC; Kim T; Deriu MA; Morbiducci U; Kamm RD
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1143-55. PubMed ID: 25708806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the acrosomal bundle.
    Schmid MF; Sherman MB; Matsudaira P; Chiu W
    Nature; 2004 Sep; 431(7004):104-7. PubMed ID: 15343340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-EM structures of actin binding proteins as tool for drug discovery.
    Dahlstroem C; Paraschiakos T; Sun H; Windhorst S
    Biochem Pharmacol; 2023 Aug; 214():115680. PubMed ID: 37399949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow dynamics and internal stress relaxation in bundled cytoskeletal networks.
    Lieleg O; Kayser J; Brambilla G; Cipelletti L; Bausch AR
    Nat Mater; 2011 Mar; 10(3):236-42. PubMed ID: 21217691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional structure of a single filament in the Limulus acrosomal bundle: scruin binds to homologous helix-loop-beta motifs in actin.
    Schmid MF; Agris JM; Jakana J; Matsudaira P; Chiu W
    J Cell Biol; 1994 Feb; 124(3):341-50. PubMed ID: 8294517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple actin binding domains of Ena/VASP proteins determine actin network stiffening.
    Gentry BS; van der Meulen S; Noguera P; Alonso-Latorre B; Plastino J; Koenderink GH
    Eur Biophys J; 2012 Nov; 41(11):979-90. PubMed ID: 23052975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.