BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 15211041)

  • 1. Image quality improvement in a hard X-ray projection microscope using total reflection mirror optics.
    Mimura H; Yamauchi K; Yamamura K; Kubota A; Matsuyama S; Sano Y; Ueno K; Endo K; Nishino Y; Tamasaku K; Yabashi M; Ishikawa T; Mori Y
    J Synchrotron Radiat; 2004 Jul; 11(Pt 4):343-6. PubMed ID: 15211041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-energy x-ray microbeam with total-reflection mirror optics.
    Suzuki Y; Takeuchi A; Terada Y
    Rev Sci Instrum; 2007 May; 78(5):053713. PubMed ID: 17552831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.
    Di Fabrizio E; Cojoc D; Emiliani V; Cabrini S; Coppey-Moisan M; Ferrari E; Garbin V; Altissimo M
    Microsc Res Tech; 2004 Nov; 65(4-5):252-62. PubMed ID: 15630683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.
    von Hofsten O; Bertilson M; Reinspach J; Holmberg A; Hertz HM; Vogt U
    Opt Lett; 2009 Sep; 34(17):2631-3. PubMed ID: 19724514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional Wolter optics with a sub-50 nm spatial resolution.
    Matsuyama S; Wakioka T; Kidani N; Kimura T; Mimura H; Sano Y; Nishino Y; Yabashi M; Tamasaku K; Ishikawa T; Yamauchi K
    Opt Lett; 2010 Nov; 35(21):3583-5. PubMed ID: 21042357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray excited optical luminescence detection by scanning near-field optical microscope: a new tool for nanoscience.
    Larcheri S; Rocca F; Jandard F; Pailharey D; Graziola R; Kuzmin A; Purans J
    Rev Sci Instrum; 2008 Jan; 79(1):013702. PubMed ID: 18248034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.
    Noda N; Kamimura S
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023704. PubMed ID: 18315302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics.
    Shastri SD
    J Synchrotron Radiat; 2004 Mar; 11(Pt 2):150-6. PubMed ID: 14960779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy.
    Chao W; Kim J; Rekawa S; Fischer P; Anderson EH
    Opt Express; 2009 Sep; 17(20):17669-77. PubMed ID: 19907552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope.
    Hoshino M; Ishino T; Namiki T; Yamada N; Watanabe N; Aoki S
    Rev Sci Instrum; 2007 Jul; 78(7):073706. PubMed ID: 17672765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of optical mosaic gratings with phase and attitude adjustments employing latent fringes and a red-wavelength dual-beam interferometer.
    Shi L; Zeng L; Li L
    Opt Express; 2009 Nov; 17(24):21530-43. PubMed ID: 19997394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum.
    Steidtner J; Pettinger B
    Rev Sci Instrum; 2007 Oct; 78(10):103104. PubMed ID: 17979403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.
    Krstajić N; Doran SJ
    Phys Med Biol; 2006 Apr; 51(8):2055-75. PubMed ID: 16585845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focusing mirror for x-ray free-electron lasers.
    Mimura H; Morita S; Kimura T; Yamakawa D; Lin W; Uehara Y; Matsuyama S; Yumoto H; Ohashi H; Tamasaku K; Nishino Y; Yabashi M; Ishikawa T; Ohmori H; Yamauchi K
    Rev Sci Instrum; 2008 Aug; 79(8):083104. PubMed ID: 19044333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution.
    Matsuyama S; Kidani N; Mimura H; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K
    Opt Express; 2012 Apr; 20(9):10310-9. PubMed ID: 22535120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pinhole interferometry with coherent hard X-rays.
    Leitenberger W; Wendrock H; Bischoff L; Weitkamp T
    J Synchrotron Radiat; 2004 Mar; 11(Pt 2):190-7. PubMed ID: 14960785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray imaging of various biological samples using a phase-contrast hard X-ray microscope.
    Kim GB; Yoon YJ; Shin TJ; Youn HS; Gho YS; Lee SJ
    Microsc Res Tech; 2008 Sep; 71(9):639-43. PubMed ID: 18454474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focal-plane imaging of crossed beams in nonlinear optics experiments.
    Bivolaru D; Herring GC
    Rev Sci Instrum; 2007 May; 78(5):056102. PubMed ID: 17552864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-distance refocusing of a submicrometre beam from an X-ray waveguide.
    Lagomarsino S; Bukreeva I; Mocella V; Surpi A; Bigault T; Cedola A
    J Synchrotron Radiat; 2006 Jan; 13(Pt 1):85-7. PubMed ID: 16371712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-CT of Pseudocneorhinus bifasciatus by projection X-ray microscopy.
    Tanisako A; Hori A; Okumura A; Miyata C; Kuzuryu C; Obi T; Yoshimura H
    J Electron Microsc (Tokyo); 2005 Aug; 54(4):379-83. PubMed ID: 16076862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.