BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15211494)

  • 1. Reduction of Cr(VI) by "palladized" biomass of Desulfovibrio desulfuricans ATCC 29577.
    Mabbett AN; Yong P; Farr JP; Macaskie LE
    Biotechnol Bioeng; 2004 Jul; 87(1):104-9. PubMed ID: 15211494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromate reduction by immobilized palladized sulfate-reducing bacteria.
    Humphries AC; Mikheenko IP; Macaskie LE
    Biotechnol Bioeng; 2006 May; 94(1):81-90. PubMed ID: 16570313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.
    Mabbett AN; Sanyahumbi D; Yong P; Macaskie LE
    Environ Sci Technol; 2006 Feb; 40(3):1015-21. PubMed ID: 16509351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307.
    Yong P; Rowson NA; Farr JP; Harris IR; Macaskie LE
    Biotechnol Bioeng; 2002 Nov; 80(4):369-79. PubMed ID: 12325145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous removal of Cr(VI) from aqueous solution catalysed by palladised biomass of Desulfovibrio vulgaris.
    Humphries AC; Nott KP; Hall LD; Macaskie LE
    Biotechnol Lett; 2004 Oct; 26(19):1529-32. PubMed ID: 15604792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dehalogenation of chlorinated aromatic compounds using a hybrid bioinorganic catalyst on cells of Desulfovibrio desulfuricans.
    Baxter-Plant VS; Mikheenko IP; Robson M; Harrad SJ; Macaskie LE
    Biotechnol Lett; 2004 Dec; 26(24):1885-90. PubMed ID: 15672233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Sulfate Reduction and Cell Division by Desulfovibrio desulfuricans Coated in Palladium Metal.
    Barnes RJ; Voegtlin SP; Naik SR; Gomes R; Hubert CRJ; Larter SR; Bryant SL
    Appl Environ Microbiol; 2022 Jun; 88(12):e0058022. PubMed ID: 35638843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomass-supported palladium catalysts on Desulfovibrio desulfuricans and Rhodobacter sphaeroides.
    Redwood MD; Deplanche K; Baxter-Plant VS; Macaskie LE
    Biotechnol Bioeng; 2008 Apr; 99(5):1045-54. PubMed ID: 17969153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds.
    Baxter-Plant VS; Mikheenko IP; Macaskie LE
    Biodegradation; 2003 Apr; 14(2):83-90. PubMed ID: 12877464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenic nanopalladium production by self-immobilized granular biomass: application for contaminant remediation.
    Suja E; Nancharaiah YV; Venugopalan VP
    Water Res; 2014 Nov; 65():395-401. PubMed ID: 25223898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomanufacture of nano-Pd(0) by Escherichia coli and electrochemical activity of bio-Pd(0) made at the expense of H
    Courtney J; Deplanche K; Rees NV; Macaskie LE
    Biotechnol Lett; 2016 Nov; 38(11):1903-1910. PubMed ID: 27502834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy.
    Macaskie LE; Baxter-Plant VS; Creamer NJ; Humphries AC; Mikheenko IP; Mikheenko PM; Penfold DW; Yong P
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):76-9. PubMed ID: 15667270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanoparticles dispersed on functionalized macadamia nutshell biomass for formic acid-mediated removal of chromium(VI) from aqueous solution.
    Moyo M; Modise SJ; Pakade VE
    Sci Total Environ; 2020 Nov; 743():140614. PubMed ID: 32659556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans.
    Creamer NJ; Baxter-Plant VS; Henderson J; Potter M; Macaskie LE
    Biotechnol Lett; 2006 Sep; 28(18):1475-84. PubMed ID: 16909331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility of a new bioinorganic catalyst: palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials.
    Deplanche K; Snape TJ; Hazrati S; Harrad S; Macaskie LE
    Environ Technol; 2009 Jun; 30(7):681-92. PubMed ID: 19705605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.
    Beauregard DA; Yong P; Macaskie LE; Johns ML
    Biotechnol Bioeng; 2010 Sep; 107(1):11-20. PubMed ID: 20506297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of biologically influenced palladium microstructures by Desulfovibrio desulfuricans and Desulfovibrio ferrophilus IS5.
    Voegtlin SP; Barnes RJ; Hubert CRJ; Larter SR; Bryant SL
    N Biotechnol; 2022 Dec; 72():128-138. PubMed ID: 36396027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cr(VI) and azo dye removal using a hollow-fibre membrane system functionalized with a biogenic Pd-magnetite catalyst.
    Coker VS; Garrity A; Wennekes WB; Roesink HD; Cutting RS; Lloyd JR
    Environ Technol; 2014; 35(5-8):1046-54. PubMed ID: 24645489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate.
    Chidambaram D; Hennebel T; Taghavi S; Mast J; Boon N; Verstraete W; van der Lelie D; Fitts JP
    Environ Sci Technol; 2010 Oct; 44(19):7635-40. PubMed ID: 20822130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxin is involved in U(VI) and Cr(VI) reduction in Desulfovibrio desulfuricans G20.
    Li X; Krumholz LR
    J Bacteriol; 2009 Aug; 191(15):4924-33. PubMed ID: 19482922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.