These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15211494)

  • 61. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication.
    Ferro Orozco AM; Contreras EM; Zaritzky NE
    J Hazard Mater; 2010 Apr; 176(1-3):657-65. PubMed ID: 20004056
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems.
    Colica G; Mecarozzi PC; De Philippis R
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1953-61. PubMed ID: 20508931
    [TBL] [Abstract][Full Text] [Related]  

  • 63. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors.
    Caravelli AH; Zaritzky NE
    J Hazard Mater; 2009 Sep; 168(2-3):1346-58. PubMed ID: 19345486
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sonoassisted microbial reduction of chromium.
    Kathiravan MN; Karthick R; Muthu N; Muthukumar K; Velan M
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2000-13. PubMed ID: 19636521
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Microbial reduction of hexavalent chromium by landfill leachate.
    Li Y; Low GK; Scott JA; Amal R
    J Hazard Mater; 2007 Apr; 142(1-2):153-9. PubMed ID: 17046156
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production of highly catalytic, archaeal Pd(0) bionanoparticles using Sulfolobus tokodaii.
    Kitjanukit S; Sasaki K; Okibe N
    Extremophiles; 2019 Sep; 23(5):549-556. PubMed ID: 31218490
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Column study on Cr(VI)-reduction using the brown seaweed Ecklonia biomass.
    Park D; Yun YS; Lee DS; Lim SR; Park JM
    J Hazard Mater; 2006 Oct; 137(3):1377-84. PubMed ID: 16647206
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparative study of chromium biosorption by red, green and brown seaweed biomass.
    Murphy V; Hughes H; McLoughlin P
    Chemosphere; 2008 Jan; 70(6):1128-34. PubMed ID: 17884133
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.
    Middleton SS; Latmani RB; Mackey MR; Ellisman MH; Tebo BM; Criddle CS
    Biotechnol Bioeng; 2003 Sep; 83(6):627-37. PubMed ID: 12889027
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Reduction remediation of hexavalent chromium by bacterial flora in Cr(VI) aqueous solution.
    Wang Q; Xu X; Zhao F; Liu Z; Xu J
    Water Sci Technol; 2010; 61(11):2889-96. PubMed ID: 20489262
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp.
    Park D; Yun YS; Park JM
    Chemosphere; 2005 Sep; 60(10):1356-64. PubMed ID: 16054904
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials.
    Albadarin AB; Mangwandi C; Walker GM; Allen SJ; Ahmad MN; Khraisheh M
    J Environ Manage; 2013 Jan; 114():190-201. PubMed ID: 23134975
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [The reduction of Cr(VI) by bacteria of the genus Pseudomonas].
    Dmitrienko GN; Konovalova VV; Shum OA
    Mikrobiologiia; 2003; 72(3):370-3. PubMed ID: 12901012
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient catalytic reduction of highly toxic aqueous Cr(VI) with Fe@CBC/Pd composites at room temperature.
    Ma B; Zhu J; Sun B; Chen C; Sun D
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8569-8575. PubMed ID: 33067787
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Size control and catalytic activity of bio-supported palladium nanoparticles.
    Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp.
    Kavita B; Limbachia J; Keharia H
    J Basic Microbiol; 2011 Apr; 51(2):173-82. PubMed ID: 21298678
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates.
    Sani RK; Peyton BM; Smith WA; Apel WA; Petersen JN
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):192-9. PubMed ID: 12382063
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions.
    Xu L; Luo M; Jiang C; Wei X; Kong P; Liang X; Zhao J; Yang L; Liu H
    Appl Biochem Biotechnol; 2012 Feb; 166(4):933-41. PubMed ID: 22161214
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hexavalent chromium reduction in Desulfovibrio vulgaris Hildenborough causes transitory inhibition of sulfate reduction and cell growth.
    Klonowska A; Clark ME; Thieman SB; Giles BJ; Wall JD; Fields MW
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1007-16. PubMed ID: 18265973
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bio-generated metal binding polysaccharides as catalysts for synthetic applications and organic pollutant transformations.
    Baldi F; Marchetto D; Paganelli S; Piccolo O
    N Biotechnol; 2011 Dec; 29(1):74-8. PubMed ID: 21616180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.