These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15211504)

  • 1. Automatic target selection for structural genomics on eukaryotes.
    Liu J; Hegyi H; Acton TB; Montelione GT; Rost B
    Proteins; 2004 Aug; 56(2):188-200. PubMed ID: 15211504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protein target list of the Northeast Structural Genomics Consortium.
    Wunderlich Z; Acton TB; Liu J; Kornhaber G; Everett J; Carter P; Lan N; Echols N; Gerstein M; Rost B; Montelione GT
    Proteins; 2004 Aug; 56(2):181-7. PubMed ID: 15211503
    [No Abstract]   [Full Text] [Related]  

  • 3. Target space for structural genomics revisited.
    Liu J; Rost B
    Bioinformatics; 2002 Jul; 18(7):922-33. PubMed ID: 12117789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHOP proteins into structural domain-like fragments.
    Liu J; Rost B
    Proteins; 2004 May; 55(3):678-88. PubMed ID: 15103630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coverage of protein sequence space by current structural genomics targets.
    O'Toole N; Raymond S; Cygler M
    J Struct Funct Genomics; 2003; 4(2-3):47-55. PubMed ID: 14649288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive analysis of orthologous protein domains using the HOPS database.
    Storm CE; Sonnhammer EL
    Genome Res; 2003 Oct; 13(10):2353-62. PubMed ID: 14525933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches.
    Chandonia JM; Brenner SE
    Proteins; 2005 Jan; 58(1):166-79. PubMed ID: 15521074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparative genomics and proteomics of Drosophila, Brenner's nematode, and Arabidopsis: identification of functionally similar genes and proteins of meiotic chromosome synapsis].
    Bogdanov IuF; Dadashev SIa; Grishaeva TM
    Genetika; 2002 Aug; 38(8):1078-89. PubMed ID: 12244692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSI-2: structural genomics to cover protein domain family space.
    Dessailly BH; Nair R; Jaroszewski L; Fajardo JE; Kouranov A; Lee D; Fiser A; Godzik A; Rost B; Orengo C
    Structure; 2009 Jun; 17(6):869-81. PubMed ID: 19523904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space.
    Marsden RL; Lee D; Maibaum M; Yeats C; Orengo CA
    Nucleic Acids Res; 2006; 34(3):1066-80. PubMed ID: 16481312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes.
    Pandit SB; Gosar D; Abhiman S; Sujatha S; Dixit SS; Mhatre NS; Sowdhamini R; Srinivasan N
    Nucleic Acids Res; 2002 Jan; 30(1):289-93. PubMed ID: 11752317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural genomics experimental pipeline: insights from global target lists.
    O'Toole N; Grabowski M; Otwinowski Z; Minor W; Cygler M
    Proteins; 2004 Aug; 56(2):201-10. PubMed ID: 15211505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.
    Serrano P; Dutta SK; Proudfoot A; Mohanty B; Susac L; Martin B; Geralt M; Jaroszewski L; Godzik A; Elsliger M; Wilson IA; Wüthrich K
    FEBS J; 2016 Nov; 283(21):3870-3881. PubMed ID: 27154589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of sequence and structure protein domain families as a basis for structural genomics.
    Elofsson A; Sonnhammer EL
    Bioinformatics; 1999 Jun; 15(6):480-500. PubMed ID: 10383473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PAS fold. A redefinition of the PAS domain based upon structural prediction.
    Hefti MH; Françoijs KJ; de Vries SC; Dixon R; Vervoort J
    Eur J Biochem; 2004 Mar; 271(6):1198-208. PubMed ID: 15009198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain fusion analysis by applying relational algebra to protein sequence and domain databases.
    Truong K; Ikura M
    BMC Bioinformatics; 2003 May; 4():16. PubMed ID: 12734020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated search of natively folded protein fragments for high-throughput structure determination in structural genomics.
    Kuroda Y; Tani K; Matsuo Y; Yokoyama S
    Protein Sci; 2000 Dec; 9(12):2313-21. PubMed ID: 11206052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The COG database: an updated version includes eukaryotes.
    Tatusov RL; Fedorova ND; Jackson JD; Jacobs AR; Kiryutin B; Koonin EV; Krylov DM; Mazumder R; Mekhedov SL; Nikolskaya AN; Rao BS; Smirnov S; Sverdlov AV; Vasudevan S; Wolf YI; Yin JJ; Natale DA
    BMC Bioinformatics; 2003 Sep; 4():41. PubMed ID: 12969510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RCSB PDB information portal for structural genomics.
    Kouranov A; Xie L; de la Cruz J; Chen L; Westbrook J; Bourne PE; Berman HM
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D302-5. PubMed ID: 16381872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coverage of whole proteome by structural genomics observed through protein homology modeling database.
    Yura K; Yamaguchi A; Go M
    J Struct Funct Genomics; 2006 Jun; 7(2):65-76. PubMed ID: 17146617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.