These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15211506)

  • 1. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments.
    Fodor AA; Aldrich RW
    Proteins; 2004 Aug; 56(2):211-21. PubMed ID: 15211506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins.
    Moelbert S; Emberly E; Tang C
    Protein Sci; 2004 Mar; 13(3):752-62. PubMed ID: 14767075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PHYSEAN: PHYsical SEquence ANalysis for the identification of protein domains on the basis of physical and chemical properties of amino acids.
    Ladunga I
    Bioinformatics; 1999 Dec; 15(12):1028-38. PubMed ID: 10745993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures.
    Glaser F; Rosenberg Y; Kessel A; Pupko T; Ben-Tal N
    Proteins; 2005 Feb; 58(3):610-7. PubMed ID: 15614759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The context-dependence of amino acid properties.
    Ioerger TR
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():157-66. PubMed ID: 9322031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of structure-based sequence alignment of automatic methods.
    Kim C; Lee B
    BMC Bioinformatics; 2007 Sep; 8():355. PubMed ID: 17883866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple tool to explore the distance distribution of correlated mutations in proteins.
    Perez-Jimenez R; Godoy-Ruiz R; Parody-Morreale A; Ibarra-Molero B; Sanchez-Ruiz JM
    Biophys Chem; 2006 Feb; 119(3):240-6. PubMed ID: 16239060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are knowledge-based potentials derived from protein structure sets discriminative with respect to amino acid types?
    Sunyaev SR; Eisenhaber F; Argos P; Kuznetsov EN; Tumanyan VG
    Proteins; 1998 May; 31(3):225-46. PubMed ID: 9593195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming.
    Gültas M; Düzgün G; Herzog S; Jäger SJ; Meckbach C; Wingender E; Waack S
    BMC Bioinformatics; 2014 Apr; 15():96. PubMed ID: 24694117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SDR: a database of predicted specificity-determining residues in proteins.
    Donald JE; Shakhnovich EI
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D191-4. PubMed ID: 18927118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?
    Shindyalov IN; Kolchanov NA; Sander C
    Protein Eng; 1994 Mar; 7(3):349-58. PubMed ID: 8177884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating background frequency improves entropy-based residue conservation measures.
    Wang K; Samudrala R
    BMC Bioinformatics; 2006 Aug; 7():385. PubMed ID: 16916457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OXBench: a benchmark for evaluation of protein multiple sequence alignment accuracy.
    Raghava GP; Searle SM; Audley PC; Barber JD; Barton GJ
    BMC Bioinformatics; 2003 Oct; 4():47. PubMed ID: 14552658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grouping of amino acid types and extraction of amino acid properties from multiple sequence alignments using variance maximization.
    Wrabl JO; Grishin NV
    Proteins; 2005 Nov; 61(3):523-34. PubMed ID: 16184599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eigenvalue analysis of amino acid substitution matrices reveals a sharp transition of the mode of sequence conservation in proteins.
    Kinjo AR; Nishikawa K
    Bioinformatics; 2004 Nov; 20(16):2504-8. PubMed ID: 15130930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants.
    Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP
    Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new progressive-iterative algorithm for multiple structure alignment.
    Lupyan D; Leo-Macias A; Ortiz AR
    Bioinformatics; 2005 Aug; 21(15):3255-63. PubMed ID: 15941743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J; Feng JA
    Proteins; 2005 Feb; 58(3):628-37. PubMed ID: 15616964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting functionally important residues from sequence conservation.
    Capra JA; Singh M
    Bioinformatics; 2007 Aug; 23(15):1875-82. PubMed ID: 17519246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.