These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 15211512)
21. Steered molecular dynamics studies of titin I1 domain unfolding. Gao M; Wilmanns M; Schulten K Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110 [TBL] [Abstract][Full Text] [Related]
22. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. Rief M; Pascual J; Saraste M; Gaub HE J Mol Biol; 1999 Feb; 286(2):553-61. PubMed ID: 9973570 [TBL] [Abstract][Full Text] [Related]
23. Stretching and unfolding of multidomain biopolymers: a statistical mechanics theory of titin. Staple DB; Payne SH; Reddin AL; Kreuzer HJ Phys Biol; 2009 Jul; 6(2):025005. PubMed ID: 19571360 [TBL] [Abstract][Full Text] [Related]
24. A kinetic molecular model of the reversible unfolding and refolding of titin under force extension. Zhang B; Xu G; Evans JS Biophys J; 1999 Sep; 77(3):1306-15. PubMed ID: 10465743 [TBL] [Abstract][Full Text] [Related]
25. Mechanical unfolding revisited through a simple but realistic model. West DK; Olmsted PD; Paci E J Chem Phys; 2006 Apr; 124(15):154909. PubMed ID: 16674267 [TBL] [Abstract][Full Text] [Related]
26. Thermal unfolding simulations of apo-calmodulin using leap-dynamics. Kleinjung J; Fraternali F; Martin SR; Bayley PM Proteins; 2003 Mar; 50(4):648-56. PubMed ID: 12577271 [TBL] [Abstract][Full Text] [Related]
27. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Lu H; Isralewitz B; Krammer A; Vogel V; Schulten K Biophys J; 1998 Aug; 75(2):662-71. PubMed ID: 9675168 [TBL] [Abstract][Full Text] [Related]
28. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718 [TBL] [Abstract][Full Text] [Related]
29. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations. Best RB; Fowler SB; Herrera JL; Steward A; Paci E; Clarke J J Mol Biol; 2003 Jul; 330(4):867-77. PubMed ID: 12850153 [TBL] [Abstract][Full Text] [Related]
30. The mechanical hierarchies of fibronectin observed with single-molecule AFM. Oberhauser AF; Badilla-Fernandez C; Carrion-Vazquez M; Fernandez JM J Mol Biol; 2002 May; 319(2):433-47. PubMed ID: 12051919 [TBL] [Abstract][Full Text] [Related]
31. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016 [TBL] [Abstract][Full Text] [Related]
32. Conformational stability and domain unfolding of the Von Willebrand factor A domains. Auton M; Cruz MA; Moake J J Mol Biol; 2007 Feb; 366(3):986-1000. PubMed ID: 17187823 [TBL] [Abstract][Full Text] [Related]
33. Point mutations alter the mechanical stability of immunoglobulin modules. Li H; Carrion-Vazquez M; Oberhauser AF; Marszalek PE; Fernandez JM Nat Struct Biol; 2000 Dec; 7(12):1117-20. PubMed ID: 11101892 [TBL] [Abstract][Full Text] [Related]
34. Mechanical unfolding pathway and origin of mechanical stability of proteins of ubiquitin family: an investigation by steered molecular dynamics simulation. Das A; Mukhopadhyay C Proteins; 2009 Jun; 75(4):1024-34. PubMed ID: 19089957 [TBL] [Abstract][Full Text] [Related]
35. Titin; a multidomain protein that behaves as the sum of its parts. Scott KA; Steward A; Fowler SB; Clarke J J Mol Biol; 2002 Jan; 315(4):819-29. PubMed ID: 11812150 [TBL] [Abstract][Full Text] [Related]
36. Mechanically unfolding proteins: the effect of unfolding history and the supramolecular scaffold. Zinober RC; Brockwell DJ; Beddard GS; Blake AW; Olmsted PD; Radford SE; Smith DA Protein Sci; 2002 Dec; 11(12):2759-65. PubMed ID: 12441375 [TBL] [Abstract][Full Text] [Related]
37. Stretching of proteins in the entropic limit. Cieplak M; Hoang TX; Robbins MO Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011912. PubMed ID: 14995652 [TBL] [Abstract][Full Text] [Related]
38. A single-molecule perspective on the role of solvent hydrogen bonds in protein folding and chemical reactions. Dougan L; Koti AS; Genchev G; Lu H; Fernandez JM Chemphyschem; 2008 Dec; 9(18):2836-47. PubMed ID: 19058277 [TBL] [Abstract][Full Text] [Related]
39. Proteins in a shear flow. Szymczak P; Cieplak M J Chem Phys; 2007 Oct; 127(15):155106. PubMed ID: 17949222 [TBL] [Abstract][Full Text] [Related]
40. The key event in force-induced unfolding of Titin's immunoglobulin domains. Lu H; Schulten K Biophys J; 2000 Jul; 79(1):51-65. PubMed ID: 10866937 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]