These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 15212268)

  • 1. Preservation of As(III) and As(V) in drinking water supply samples from across the United States using EDTA and acetic acid as a means of minimizing iron-arsenic coprecipitation.
    Gallagher PA; Schwegel CA; Parks A; Gamble BM; Wymer L; Creed JT
    Environ Sci Technol; 2004 May; 38(10):2919-27. PubMed ID: 15212268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speciation and preservation of inorganic arsenic in drinking water sources using EDTA with IC separation and ICP-MS detection.
    Gallagher PA; Schwegel CA; Wei X; Creed JT
    J Environ Monit; 2001 Aug; 3(4):371-6. PubMed ID: 11558469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and evaluation of iron-chitosan composites for removal of As(III) and As(V) from arsenic contaminated real life groundwater.
    Gupta A; Chauhan VS; Sankararamakrishnan N
    Water Res; 2009 Aug; 43(15):3862-70. PubMed ID: 19577786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenate co-precipitation with Fe(II) oxidation products and retention or release during precipitate aging.
    Senn AC; Hug SJ; Kaegi R; Hering JG; Voegelin A
    Water Res; 2018 Mar; 131():334-345. PubMed ID: 29306667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water.
    Melitas N; Conklin M; Farrell J
    Environ Sci Technol; 2002 Jul; 36(14):3188-93. PubMed ID: 12141502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of thioarsenates in iron-rich waters.
    Suess E; Wallschläger D; Planer-Friedrich B
    Chemosphere; 2011 Jun; 83(11):1524-31. PubMed ID: 21324509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel two-step coprecipitation process using Fe(III) and Al(III) for the removal and immobilization of arsenate from acidic aqueous solution.
    Jia Y; Zhang D; Pan R; Xu L; Demopoulos GP
    Water Res; 2012 Feb; 46(2):500-8. PubMed ID: 22142599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.
    Roberts LC; Hug SJ; Ruettimann T; Billah M; Khan AW; Rahman MT
    Environ Sci Technol; 2004 Jan; 38(1):307-15. PubMed ID: 14740752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of sequential and enzymatic extraction of arsenic from drinking water distribution solids using ICP-MS.
    Creed PA; Gallawa CM; Young AR; Schwegel CA; Lytle D; Sorg TJ; Creed JT
    J Environ Monit; 2006 Sep; 8(9):968-72. PubMed ID: 16951758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltammetric determination of arsenic in high iron and manganese groundwaters.
    Gibbon-Walsh K; Salaün P; Uroic MK; Feldmann J; McArthur JM; van den Berg CM
    Talanta; 2011 Sep; 85(3):1404-11. PubMed ID: 21807202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).
    Jiménez-Cedillo MJ; Olguín MT; Fall C; Colin-Cruz A
    J Environ Manage; 2013 Mar; 117():242-52. PubMed ID: 23376307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reactions between arsenic and zero-valent iron in water.
    Bang S; Johnson MD; Korfiatis GP; Meng X
    Water Res; 2005 Mar; 39(5):763-70. PubMed ID: 15743620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preservation of inorganic arsenic species in groundwater.
    Samanta G; Clifford DA
    Environ Sci Technol; 2005 Nov; 39(22):8877-82. PubMed ID: 16323789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of arsenic speciation in sulfidic waters by Ion Chromatography Hydride-Generation Atomic Fluorescence Spectrometry (IC-HG-AFS).
    Keller NS; Stefánsson A; Sigfússon B
    Talanta; 2014 Oct; 128():466-72. PubMed ID: 25059187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of arsenic(III) and arsenic(V) removal from waters using ferric hydroxide supported on silica gel prepared at low pH.
    Ciftçi TD; Yayayürük O; Henden E
    Environ Technol; 2011; 32(3-4):341-51. PubMed ID: 21780702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenite removal from groundwater by iron-manganese oxides filter media: Behavior and mechanism.
    Cheng Y; Zhang S; Huang T; Li Y
    Water Environ Res; 2019 Jun; 91(6):536-545. PubMed ID: 30667121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coprecipitation of arsenate with iron(III) in aqueous sulfate media: effect of time, lime as base and co-ions on arsenic retention.
    Jia Y; Demopoulos GP
    Water Res; 2008 Feb; 42(3):661-8. PubMed ID: 17825873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.