BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 15212529)

  • 1. Selective catalysis with peptide dendrimers.
    Douat-Casassus C; Darbre T; Reymond JL
    J Am Chem Soc; 2004 Jun; 126(25):7817-26. PubMed ID: 15212529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and esterolytic activity of catalytic peptide dendrimers.
    Lagnoux D; Delort E; Douat-Casassus C; Esposito A; Reymond JL
    Chemistry; 2004 Mar; 10(5):1215-26. PubMed ID: 15007811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and activity of histidine-containing catalytic peptide dendrimers.
    Delort E; Nguyen-Trung NQ; Darbre T; Reymond JL
    J Org Chem; 2006 Jun; 71(12):4468-80. PubMed ID: 16749776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial synthesis, selection, and properties of esterase peptide dendrimers.
    Clouet A; Darbre T; Reymond JL
    Biopolymers; 2006; 84(1):114-23. PubMed ID: 16235227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A peptide dendrimer enzyme model with a single catalytic site at the core.
    Javor S; Delort E; Darbre T; Reymond JL
    J Am Chem Soc; 2007 Oct; 129(43):13238-46. PubMed ID: 17924626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A strong positive dendritic effect in a peptide dendrimer-catalyzed ester hydrolysis reaction.
    Delort E; Darbre T; Reymond JL
    J Am Chem Soc; 2004 Dec; 126(48):15642-3. PubMed ID: 15571376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents.
    Darbre T; Reymond JL
    Acc Chem Res; 2006 Dec; 39(12):925-34. PubMed ID: 17176031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of catalytic Peptide dendrimers by "off-bead" in silica high-throughput screening of combinatorial libraries.
    Maillard N; Darbre T; Reymond JL
    J Comb Chem; 2009; 11(4):667-75. PubMed ID: 19408949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined enzyme and substrate design: grafting of a cooperative two-histidine catalytic motif into a protein targeted at the scissile bond in a designed ester substrate.
    Höst GE; Razkin J; Baltzer L; Jonsson BH
    Chembiochem; 2007 Sep; 8(13):1570-6. PubMed ID: 17665409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new enzyme model for enantioselective esterases based on molecularly imprinted polymers.
    Emgenbroich M; Wulff G
    Chemistry; 2003 Sep; 9(17):4106-17. PubMed ID: 12953196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.
    Razkin J; Lindgren J; Nilsson H; Baltzer L
    Chembiochem; 2008 Aug; 9(12):1975-84. PubMed ID: 18600814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nonspecific trypsin substrates in the enzymatic synthesis of peptides].
    Mitin IuV; Zapevalova NP; Zaĭtseva OR; Gorbunova EIu
    Bioorg Khim; 1994 Mar; 20(3):310-5. PubMed ID: 8166758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. III. Rate constants for individual stages and thermodynamic parameters at different pH's].
    Antonov VK; Ginodman LM; Gurova AG
    Mol Biol (Mosk); 1977; 11(5):1160-6. PubMed ID: 36553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ester hydrolysis by a cyclodextrin dimer catalyst with a tridentate N,N',N''-zinc linking group.
    Tang SP; Zhou YH; Chen HY; Zhao CY; Mao ZW; Ji LN
    Chem Asian J; 2009 Aug; 4(8):1354-60. PubMed ID: 19579255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the dendritic effect in multivalent enzyme-like catalysts.
    Zaupa G; Scrimin P; Prins LJ
    J Am Chem Soc; 2008 Apr; 130(17):5699-709. PubMed ID: 18399633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis.
    Ma Y; Lu G
    Dalton Trans; 2008 Feb; (8):1081-6. PubMed ID: 18274689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.