These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 15212800)
1. Metalloregulation in Bacillus subtilis: the copZ chromosomal gene is involved in cadmium resistance. Solovieva IM; Entian KD FEMS Microbiol Lett; 2004 Jul; 236(1):115-22. PubMed ID: 15212800 [TBL] [Abstract][Full Text] [Related]
2. Two MerR homologues that affect copper induction of the Bacillus subtilis copZA operon. Gaballa A; Cao M; Helmann JD Microbiology (Reading); 2003 Dec; 149(Pt 12):3413-3421. PubMed ID: 14663075 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic insights into Cu(I) cluster transfer between the chaperone CopZ and its cognate Cu(I)-transporting P-type ATPase, CopA. Singleton C; Hearnshaw S; Zhou L; Le Brun NE; Hemmings AM Biochem J; 2009 Dec; 424(3):347-56. PubMed ID: 19751213 [TBL] [Abstract][Full Text] [Related]
4. Copper-mediated dimerization of CopZ, a predicted copper chaperone from Bacillus subtilis. Kihlken MA; Leech AP; Le Brun NE Biochem J; 2002 Dec; 368(Pt 3):729-39. PubMed ID: 12238948 [TBL] [Abstract][Full Text] [Related]
5. The stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone of Enterococcus hirae. Stoyanov JV; Mancini S; Lu ZH; Mourlane F; Poulsen KR; Wimmer R; Solioz M FEMS Microbiol Lett; 2010 Jan; 302(1):69-75. PubMed ID: 19903200 [TBL] [Abstract][Full Text] [Related]
6. CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. Radford DS; Kihlken MA; Borrelly GP; Harwood CR; Le Brun NE; Cavet JS FEMS Microbiol Lett; 2003 Mar; 220(1):105-12. PubMed ID: 12644235 [TBL] [Abstract][Full Text] [Related]
7. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580 [TBL] [Abstract][Full Text] [Related]
8. Tuning of copper-loop flexibility in Bacillus subtilis CopZ copper chaperone: role of conserved residues. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2009 Feb; 113(7):1919-32. PubMed ID: 19170606 [TBL] [Abstract][Full Text] [Related]
9. Solution structure of apo CopZ from Bacillus subtilis: further analysis of the changes associated with the presence of copper. Banci L; Bertini I; Del Conte R Biochemistry; 2003 Nov; 42(46):13422-8. PubMed ID: 14621987 [TBL] [Abstract][Full Text] [Related]
10. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Multhaup G; Strausak D; Bissig KD; Solioz M Biochem Biophys Res Commun; 2001 Oct; 288(1):172-7. PubMed ID: 11594769 [TBL] [Abstract][Full Text] [Related]
11. Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Mitrakul K; Loo CY; Hughes CV; Ganeshkumar N Oral Microbiol Immunol; 2004 Dec; 19(6):395-402. PubMed ID: 15491466 [TBL] [Abstract][Full Text] [Related]
12. High Cu(I) and low proton affinities of the CXXC motif of Bacillus subtilis CopZ. Zhou L; Singleton C; Le Brun NE Biochem J; 2008 Aug; 413(3):459-65. PubMed ID: 18419582 [TBL] [Abstract][Full Text] [Related]
13. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Gaballa A; Helmann JD Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-DueƱas FJ J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674 [TBL] [Abstract][Full Text] [Related]
16. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae. Magnani D; Solioz M Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233 [TBL] [Abstract][Full Text] [Related]
17. Distinct characteristics of Ag+ and Cd2+ binding to CopZ from Bacillus subtilis. Kihlken MA; Singleton C; Le Brun NE J Biol Inorg Chem; 2008 Aug; 13(6):1011-23. PubMed ID: 18496720 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the yvgW Bacillus subtilis chromosomal gene involved in Cd(2+) ion resistance. Solovieva IM; Entian KD FEMS Microbiol Lett; 2002 Feb; 208(1):105-9. PubMed ID: 11934502 [TBL] [Abstract][Full Text] [Related]
19. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527 [TBL] [Abstract][Full Text] [Related]
20. The Enterococcus hirae paradigm of copper homeostasis: copper chaperone turnover, interactions, and transactions. Lu ZH; Dameron CT; Solioz M Biometals; 2003 Mar; 16(1):137-43. PubMed ID: 12572673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]