These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15212900)

  • 21. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.
    Jin J; Zhao WR; Xu XH; Hao ZW; Liu Y; He P; Zhou M
    J Environ Sci (China); 2006; 18(3):464-7. PubMed ID: 17294641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A.
    El-Kamash AM; Zaki AA; El Geleel MA
    J Hazard Mater; 2005 Dec; 127(1-3):211-20. PubMed ID: 16125311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of factors affecting performance of a zeolitic rock barrier to remove zinc from water.
    Lee SH; Jo HY; Yun ST; Lee YJ
    J Hazard Mater; 2010 Mar; 175(1-3):224-34. PubMed ID: 19880248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental study and modeling of the transfer of zinc in a low reactive sand column in the presence of acetate.
    Delolme C; Hébrard-Labit C; Spadini L; Gaudet JP
    J Contam Hydrol; 2004 Jun; 70(3-4):205-24. PubMed ID: 15134875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions.
    Rao MM; Rao GP; Seshaiah K; Choudary NV; Wang MC
    Waste Manag; 2008; 28(5):849-58. PubMed ID: 17416512
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of malachite green on groundnut shell waste based powdered activated carbon.
    Malik R; Ramteke DS; Wate SR
    Waste Manag; 2007; 27(9):1129-38. PubMed ID: 17029775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arsenate removal from water using sand--red mud columns.
    Genç-Fuhrman H; Bregnhøj H; McConchie D
    Water Res; 2005 Aug; 39(13):2944-54. PubMed ID: 15979686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid phase studies and geochemical modelling of low-cost permeable reactive barriers.
    Bartzas G; Komnitsas K
    J Hazard Mater; 2010 Nov; 183(1-3):301-8. PubMed ID: 20678863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorptive, thermodynamic and kinetic performances of Al/Ti and Al/Zr-pillared clays from the Brazilian Amazon region for zinc cation removal.
    Guerra DL; Airoldi C; Lemos VP; Angélica RS
    J Hazard Mater; 2008 Jun; 155(1-2):230-42. PubMed ID: 18162300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of carbonated tricalcium silicate and its sorption capacity for heavy metals: a micron-scale composite adsorbent of active silicate gel and calcite.
    Chen Q; Hills CD; Yuan M; Liu H; Tyrer M
    J Hazard Mater; 2008 May; 153(1-2):775-83. PubMed ID: 17950999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defluoridation of water using as-synthesized Zn/Al/Cl anionic clay adsorbent: equilibrium and regeneration studies.
    Mandal S; Mayadevi S
    J Hazard Mater; 2009 Aug; 167(1-3):873-8. PubMed ID: 19233556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of silica on the degradation of organohalides in granular iron columns.
    Kohn T; Roberts AL
    J Contam Hydrol; 2006 Feb; 83(1-2):70-88. PubMed ID: 16364495
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash.
    Pehlivan E; Cetin S; Yanik BH
    J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Environmental toxicity of waste foundry sand].
    Zhang HF; Wang YJ; Wang JL; Huang TY; Xiong Y
    Huan Jing Ke Xue; 2013 Mar; 34(3):1174-80. PubMed ID: 23745431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rice hull/MnFe2O4 composite: preparation, characterization and its rapid microwave-assisted COD removal for organic wastewater.
    Lv S; Chen X; Ye Y; Yin S; Cheng J; Xia M
    J Hazard Mater; 2009 Nov; 171(1-3):634-9. PubMed ID: 19581049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of a dye on clay and sand. Use of cyclodextrins as solubility-enhancement agents.
    De Lisi R; Lazzara G; Milioto S; Muratore N
    Chemosphere; 2007 Nov; 69(11):1703-12. PubMed ID: 17644152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.