These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 15212917)
81. Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding. Mayer S Bull Math Biol; 2000 Nov; 62(6):1035-59. PubMed ID: 11127513 [TBL] [Abstract][Full Text] [Related]
82. A Multiscale Model of Cardiovascular System Including an Immersed Whole Heart in the Cases of Normal and Ventricular Septal Defect (VSD). Lee W; Jung E Bull Math Biol; 2015 Jul; 77(7):1349-76. PubMed ID: 26223734 [TBL] [Abstract][Full Text] [Related]
83. [Calculation of the linear blood flow velocity in the aorta and its branches]. Orlov AG Kardiologiia; 1967 Aug; 7(8):112-5. PubMed ID: 4891754 [No Abstract] [Full Text] [Related]
84. Disturbances of flow through transparent dog aortic arch. Fukushima T; Karino T; Goldsmith HL Heart Vessels; 1985 Feb; 1(1):24-8. PubMed ID: 4093352 [TBL] [Abstract][Full Text] [Related]
85. [Simulation on the hydrodynamics of a flow chamber system]. Liu X; Chen H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):441-4. PubMed ID: 12552719 [TBL] [Abstract][Full Text] [Related]
86. A 1D computer model of the arterial circulation in horses: An important resource for studying global interactions between heart and vessels under normal and pathological conditions. Vera L; Campos Arias D; Muylle S; Stergiopulos N; Segers P; van Loon G PLoS One; 2019; 14(8):e0221425. PubMed ID: 31433827 [TBL] [Abstract][Full Text] [Related]
87. [Venous hemodynamics. Basic equations]. Ribreau C J Mal Vasc; 1989; 14(2):100-6. PubMed ID: 2754344 [TBL] [Abstract][Full Text] [Related]
88. Computer model of nucleotide transport in a realistic porcine aortic trifurcation. Comerford A; David T Ann Biomed Eng; 2008 Jul; 36(7):1175-87. PubMed ID: 18415019 [TBL] [Abstract][Full Text] [Related]
89. Pulsatile flow and pressure in human systemic arteries. Studies in man and in a multibranched model of the human systemic arterial tree. O'Rourke MF; Avolio AP Circ Res; 1980 Mar; 46(3):363-72. PubMed ID: 6987005 [No Abstract] [Full Text] [Related]
90. Numerical experiment for ultrasonic-measurement-integrated simulation of three-dimensional unsteady blood flow. Funamoto K; Hayase T; Saijo Y; Yambe T Ann Biomed Eng; 2008 Aug; 36(8):1383-97. PubMed ID: 18506625 [TBL] [Abstract][Full Text] [Related]
91. Numerical treatment of boundary conditions to replace lateral branches in hemodynamics. Porpora A; Zunino P; Vergara C; Piccinelli M Int J Numer Method Biomed Eng; 2012 Dec; 28(12):1165-83. PubMed ID: 23212795 [TBL] [Abstract][Full Text] [Related]
92. Simulation of unsteady blood flows in a patient-specific compliant pulmonary artery with a highly parallel monolithically coupled fluid-structure interaction algorithm. Kong F; Kheyfets V; Finol E; Cai XC Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3208. PubMed ID: 30989794 [TBL] [Abstract][Full Text] [Related]
93. Computational approach for probing the flow through artificial heart devices. Kiris C; Kwak D; Rogers S; Chang ID J Biomech Eng; 1997 Nov; 119(4):452-60. PubMed ID: 9407285 [TBL] [Abstract][Full Text] [Related]
94. Experimental and computational flow evaluation of coronary stents. Berry JL; Santamarina A; Moore JE; Roychowdhury S; Routh WD Ann Biomed Eng; 2000 Apr; 28(4):386-98. PubMed ID: 10870895 [TBL] [Abstract][Full Text] [Related]
95. A new model of arterial hemodynamics. Branzan M; Sundri G Physiologie; 1983; 20(3):195-204. PubMed ID: 6417699 [TBL] [Abstract][Full Text] [Related]
96. A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations. Enden G; Popel AS J Biomech Eng; 1992 Aug; 114(3):398-405. PubMed ID: 1522734 [TBL] [Abstract][Full Text] [Related]
97. Blood velocity and pressure wave-forms in the major arteries in man. Mills CJ; Gabe IT; Gault JH; Mason DT; Ross J; Braunwald E; Shillingford JP Clin Sci; 1970 Feb; 38(2):10P. PubMed ID: 4906423 [No Abstract] [Full Text] [Related]
98. Incorporating vessel taper and compliance properties in Navier-Stokes based blood flow models. Ye GF; Moore TW; Jaron D Ann Biomed Eng; 1993; 21(2):97-106. PubMed ID: 8484567 [TBL] [Abstract][Full Text] [Related]
99. Reduced-order modeling of blood flow for noninvasive functional evaluation of coronary artery disease. Buoso S; Manzoni A; Alkadhi H; Plass A; Quarteroni A; Kurtcuoglu V Biomech Model Mechanobiol; 2019 Dec; 18(6):1867-1881. PubMed ID: 31218576 [TBL] [Abstract][Full Text] [Related]
100. Determining cardiac velocity fields and intraventricular pressure distribution from a sequence of ultrafast CT cardiac images. Song SM; Leahy RM; Boyd DP; Brundage BH; Napel S IEEE Trans Med Imaging; 1994; 13(2):386-97. PubMed ID: 18218514 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]