These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15212917)

  • 101. Three-dimensional visualization of air flow in infant incubators using computational fluid mechanics.
    Hasegawa T; Horio H; Okino H; Taylor TW; Yamaguchi T
    Biomed Instrum Technol; 1993; 27(4):311-7. PubMed ID: 8369866
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Evaluation of aortic blood velocity computed from the pressure pulse. SAM-TR-66-75.
    Boyett JD; Stowe DE; Becker LH; Britz WE
    Tech Rep SAM-TR; 1966 Jun; ():1-6. PubMed ID: 5330559
    [No Abstract]   [Full Text] [Related]  

  • 103. The vibration of an artery-like tube conveying pulsatile fluid flow.
    Zhang YL; Reese JM; Gorman DG; Madhok R
    Proc Inst Mech Eng H; 2002; 216(1):1-11. PubMed ID: 11905556
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Analysis of pulsatile blood flow: a carotid siphon model.
    Perktold K; Florian H; Hilbert D
    J Biomed Eng; 1987 Jan; 9(1):46-53. PubMed ID: 3795904
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Influence of low-frequency vibrations on blood flow improvement in human's limbs.
    Venslauskas M; Ostasevicius V; Vilkinis P
    Biomed Mater Eng; 2017; 28(2):117-130. PubMed ID: 28372265
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Evaluation of a non-invasive technique to assess cardiac function. I. control and influence of some physical factors.
    van den Bos GC; Westerhof N; Elizinga G
    Bibl Cardiol; 1976; (35):41-6. PubMed ID: 985360
    [No Abstract]   [Full Text] [Related]  

  • 107. Changes in the resistance in brachiocephalic artery and thoracic aorta basins during depressor reactions of the circulatory system.
    Tkachenko BI; Yurov AY; Samoilenko AV
    Bull Exp Biol Med; 2007 May; 143(5):590-2. PubMed ID: 18239775
    [TBL] [Abstract][Full Text] [Related]  

  • 108. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling.
    Boileau E; Nithiarasu P; Blanco PJ; Müller LO; Fossan FE; Hellevik LR; Donders WP; Huberts W; Willemet M; Alastruey J
    Int J Numer Method Biomed Eng; 2015 Oct; 31(10):. PubMed ID: 26100764
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Computational model of the effects of breathing on cardiac function.
    Tran BQ; Hoffman EA
    Adv Exp Med Biol; 2001; 499():471-6. PubMed ID: 11729928
    [No Abstract]   [Full Text] [Related]  

  • 110. Transversally enriched pipe element method (TEPEM): An effective numerical approach for blood flow modeling.
    Mansilla Alvarez L; Blanco P; Bulant C; Dari E; Veneziani A; Feijóo R
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27302372
    [TBL] [Abstract][Full Text] [Related]  

  • 111. [Flow rate in the thoracic aorta in healthy subjects (author's transl)].
    Kubák R; Nevrtal M
    Cas Lek Cesk; 1974 Nov; 113(44):1337-40. PubMed ID: 4280335
    [No Abstract]   [Full Text] [Related]  

  • 112. Response to letter to the editor regarding "In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV".
    Büsen M; Kaufmann TAS; Neidlin M; Steinseifer U; Sonntag SJ
    J Biomech; 2016 Jan; 49(1):3. PubMed ID: 26654677
    [No Abstract]   [Full Text] [Related]  

  • 113. Direct visualization of interstitial flow distribution in aortic walls.
    Fukui W; Ujihara Y; Nakamura M; Sugita S
    Sci Rep; 2022 Mar; 12(1):5381. PubMed ID: 35354879
    [TBL] [Abstract][Full Text] [Related]  

  • 114. [A method for modelling acute disorders of main blood flow in the thoracic aorta].
    Tel' LZ; Lysenkov SP; Roitshtein MB
    Fiziol Zh (1978); 1988; 34(2):109-11. PubMed ID: 3391300
    [No Abstract]   [Full Text] [Related]  

  • 115. Spectral models for 1D blood flow simulations.
    Tamburrelli V; Ferranti F; Antonini G; Cristina S; Dhaene T; Knockaert L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2598-601. PubMed ID: 21096178
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.
    Terekhov KM; Butakov ID; Danilov AA; Vassilevski YV
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3731. PubMed ID: 38018385
    [TBL] [Abstract][Full Text] [Related]  

  • 117. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.
    Obabko AV; Cassel KW
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1189-98. PubMed ID: 16105779
    [TBL] [Abstract][Full Text] [Related]  

  • 118. [The problem of branches in the vascular bed. Study of a 2-dimensional model].
    Stoltz JF; Lefort M; Wackenheim E; Larcan A
    Biorheology; 1971 Dec; 8(3):165-9. PubMed ID: 5146950
    [No Abstract]   [Full Text] [Related]  

  • 119. Simulated blood transport of low density lipoproteins in a three-dimensional and permeable T-junction.
    Shibeshi SS; Everett J; Venable DD; Collins WE
    ASAIO J; 2005; 51(3):269-74. PubMed ID: 15968958
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Direct visualization of diffusion convection phenomena at liquid solid interfaces by the use of a chemiluminescent enzymatic immobilized system.
    Dimicoli JL; Nakache M; Péronneau P
    Biorheology; 1982; 19(1/2):281-300. PubMed ID: 6212089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.