These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 15213010)
1. Effect of mCOUP-TF1 deficiency on the glossopharyngeal and vagal sensory ganglia. Ichikawa H; Lin SC; Tsai SY; Tsai MJ; Sugimoto T Brain Res; 2004 Jul; 1014(1-2):247-50. PubMed ID: 15213010 [TBL] [Abstract][Full Text] [Related]
2. ASIC3-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia. Fukuda T; Ichikawa H; Terayama R; Yamaai T; Kuboki T; Sugimoto T Brain Res; 2006 Apr; 1081(1):150-5. PubMed ID: 16510130 [TBL] [Abstract][Full Text] [Related]
3. Peptide 19 in the rat vagal and glossopharyngeal sensory ganglia. Ichikawa H; Sugimoto T Brain Res; 2005 Mar; 1038(1):107-12. PubMed ID: 15748879 [TBL] [Abstract][Full Text] [Related]
4. Coexistence of calbindin D-28k and NADPH-diaphorase in vagal and glossopharyngeal sensory neurons of the rat. Ichikawa H; Helke CJ Brain Res; 1996 Oct; 735(2):325-9. PubMed ID: 8911673 [TBL] [Abstract][Full Text] [Related]
5. Parvalbumin and calbindin D-28k in vagal and glossopharyngeal sensory neurons of the rat. Ichikawa H; Helke CJ Brain Res; 1995 Mar; 675(1-2):337-41. PubMed ID: 7796149 [TBL] [Abstract][Full Text] [Related]
6. Brn-3a deficiency increases tyrosine hydroxylase-immunoreactive neurons in the dorsal root ganglion. Ichikawa H; Mo Z; Xiang M; Sugimoto T Brain Res; 2005 Mar; 1036(1-2):192-5. PubMed ID: 15725417 [TBL] [Abstract][Full Text] [Related]
7. Effect of Brn-3a deficiency on parvalbumin-, calbindin D-28k-, calretinin- and calcitonin gene-related peptide-immunoreactive primary sensory neurons in the trigeminal ganglion. Ichikawa H; Yamaai T; Jacobowitz DM; Mo Z; Xiang M; Sugimoto T Neuroscience; 2002; 113(3):537-46. PubMed ID: 12150774 [TBL] [Abstract][Full Text] [Related]
8. Studies on the coexistence of substance P with other putative transmitters in the nodose and petrosal ganglia. Helke CJ; Niederer AJ Synapse; 1990; 5(2):144-51. PubMed ID: 1689873 [TBL] [Abstract][Full Text] [Related]
10. Calcitonin gene-related peptide immunoreactive neurons innervating the soft palate, the root of tongue, and the pharynx in the superior glossopharyngeal ganglion of the rat. Hayakawa T; Kuwahara S; Maeda S; Tanaka K; Seki M J Chem Neuroanat; 2010 Jul; 39(4):221-7. PubMed ID: 20034556 [TBL] [Abstract][Full Text] [Related]
11. The survival of vagal and glossopharyngeal sensory neurons is dependent upon dystonin. Ichikawa H; De Repentigny Y; Kothary R; Sugimoto T Neuroscience; 2006; 137(2):531-6. PubMed ID: 16289886 [TBL] [Abstract][Full Text] [Related]
12. Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: a morphometric and neurochemical investigation. Chiocchetti R; Grandis A; Bombardi C; Lucchi ML; Dal Lago DT; Bortolami R; Furness JB Cell Tissue Res; 2006 Feb; 323(2):183-96. PubMed ID: 16228232 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the cellular expression pattern of beta-CGRP in alpha-CGRP-deficient mice. Schütz B; Mauer D; Salmon AM; Changeux JP; Zimmer A J Comp Neurol; 2004 Aug; 476(1):32-43. PubMed ID: 15236465 [TBL] [Abstract][Full Text] [Related]
14. Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury: evidence from mouse mutants. Jungnickel J; Klutzny A; Guhr S; Meyer K; Grothe C Neuroscience; 2005; 134(4):1343-50. PubMed ID: 16009496 [TBL] [Abstract][Full Text] [Related]
15. Calcitonin gene-related peptide immunoreactive sensory neurons in the vagal and glossopharyngeal ganglia innervating the larynx of the rat. Hayakawa T; Kuwahara-Otani S; Maeda S; Tanaka K; Seki M J Chem Neuroanat; 2014 Jan; 55():18-23. PubMed ID: 24269509 [TBL] [Abstract][Full Text] [Related]
16. Localization in the vagal ganglia of calcitonin gene-related peptide- and calretinin-immunoreactive neurons that innervate the cervical and the subdiaphragmatic esophagus of the rat. Hayakawa T; Kuwahara-Otani S; Maeda S; Tanaka K; Seki M J Chem Neuroanat; 2012 Jan; 43(1):34-42. PubMed ID: 22056362 [TBL] [Abstract][Full Text] [Related]
17. The coexistence of TrkA with putative transmitter agents and calcium-binding proteins in the vagal and glossopharyngeal sensory neurons of the adult rat. Ichikawa H; Helke CJ Brain Res; 1999 Nov; 846(2):268-73. PubMed ID: 10556646 [TBL] [Abstract][Full Text] [Related]
18. Calretinin-immunoreactivity in vagal and glossopharyngeal sensory neurons of the rat: distribution and coexistence with putative transmitter agents. Ichikawa H; Jacobowitz DM; Winsky L; Helke CJ Brain Res; 1991 Aug; 557(1-2):316-21. PubMed ID: 1720997 [TBL] [Abstract][Full Text] [Related]
19. Calbindin D-28k, parvalbumin and calcitonin gene-related peptide immunoreactivity in the canine spinal cord. Chang IY; Kim SW; Lee KJ; Yoon SP Anat Histol Embryol; 2008 Dec; 37(6):446-51. PubMed ID: 18637879 [TBL] [Abstract][Full Text] [Related]
20. Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Ichikawa H; Terayama R; Yamaai T; Yan Z; Sugimoto T Brain Res; 2007 Jun; 1155():93-9. PubMed ID: 17512913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]