These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 15213422)
1. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. Wang L; Donald BR J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422 [TBL] [Abstract][Full Text] [Related]
2. Analysis of a systematic search-based algorithm for determining protein backbone structure from a minimum number of residual dipolar couplings. Wang L; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2004; ():319-30. PubMed ID: 16448025 [TBL] [Abstract][Full Text] [Related]
3. An efficient and accurate algorithm for assigning nuclear overhauser effect restraints using a rotamer library ensemble and residual dipolar couplings. Wang L; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():189-202. PubMed ID: 16447976 [TBL] [Abstract][Full Text] [Related]
4. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns. Zeng J; Tripathy C; Zhou P; Donald BR Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278 [TBL] [Abstract][Full Text] [Related]
5. Exact solutions for chemical bond orientations from residual dipolar couplings. Wedemeyer WJ; Rohl CA; Scherag HA J Biomol NMR; 2002 Feb; 22(2):137-51. PubMed ID: 11883775 [TBL] [Abstract][Full Text] [Related]
6. High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. Zeng J; Boyles J; Tripathy C; Wang L; Yan A; Zhou P; Donald BR J Biomol NMR; 2009 Nov; 45(3):265-81. PubMed ID: 19711185 [TBL] [Abstract][Full Text] [Related]
7. An algebraic geometry approach to protein structure determination from NMR data. Wang L; Mettu RR; Donald BR Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981 [TBL] [Abstract][Full Text] [Related]
8. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509 [TBL] [Abstract][Full Text] [Related]
9. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? Clore GM; Schwieters CD J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210 [TBL] [Abstract][Full Text] [Related]
10. Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data. van Dijk AD; Fushman D; Bonvin AM Proteins; 2005 Aug; 60(3):367-81. PubMed ID: 15937902 [TBL] [Abstract][Full Text] [Related]
11. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements. Clore GM; Schwieters CD Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929 [TBL] [Abstract][Full Text] [Related]
12. Use of residual dipolar couplings as restraints in ab initio protein structure prediction. Haliloglu T; Kolinski A; Skolnick J Biopolymers; 2003 Dec; 70(4):548-62. PubMed ID: 14648765 [TBL] [Abstract][Full Text] [Related]
13. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta. Lapin J; Nevzorov AA J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969 [TBL] [Abstract][Full Text] [Related]
14. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. Wang L; Mettu RR; Donald BR J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958 [TBL] [Abstract][Full Text] [Related]
15. Residual dipolar couplings in short peptides reveal systematic conformational preferences of individual amino acids. Dames SA; Aregger R; Vajpai N; Bernado P; Blackledge M; Grzesiek S J Am Chem Soc; 2006 Oct; 128(41):13508-14. PubMed ID: 17031964 [TBL] [Abstract][Full Text] [Related]
16. Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures. Wang J; Walsh JD; Kuszewski J; Wang YX J Magn Reson; 2007 Nov; 189(1):90-103. PubMed ID: 17892961 [TBL] [Abstract][Full Text] [Related]
17. An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. Langmead CJ; Donald BR J Biomol NMR; 2004 Jun; 29(2):111-38. PubMed ID: 15014227 [TBL] [Abstract][Full Text] [Related]
18. Determining a helical protein structure using peptide pixels. Walsh JD; Kuszweski J; Wang YX J Magn Reson; 2005 Nov; 177(1):155-9. PubMed ID: 16084744 [TBL] [Abstract][Full Text] [Related]
19. A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. Langmead CJ; Yan A; Lilien R; Wang L; Donald BR J Comput Biol; 2004; 11(2-3):277-98. PubMed ID: 15285893 [TBL] [Abstract][Full Text] [Related]
20. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints. Jensen PR; Axelsen JB; Lerche MH; Poulsen FM J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]