These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 15213745)
1. Flagellar motors of marine bacteria Halomonas are driven by both protons and sodium ions. Kita-Tsukamoto K; Wada M; Yao K; Nishino T; Kogure K Can J Microbiol; 2004 May; 50(5):369-74. PubMed ID: 15213745 [TBL] [Abstract][Full Text] [Related]
2. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Atsumi T; McCarter L; Imae Y Nature; 1992 Jan; 355(6356):182-4. PubMed ID: 1309599 [TBL] [Abstract][Full Text] [Related]
3. Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP. Streif S; Staudinger WF; Marwan W; Oesterhelt D J Mol Biol; 2008 Dec; 384(1):1-8. PubMed ID: 18786541 [TBL] [Abstract][Full Text] [Related]
4. Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor. Kojima S; Atsumi T; Muramoto K; Kudo S; Kawagishi I; Homma M J Mol Biol; 1997 Jan; 265(3):310-8. PubMed ID: 9018045 [TBL] [Abstract][Full Text] [Related]
5. The influence of NaCl and carbonylcyanide-m-chlorophenylhydrazone on the production of extracellular proteases in a marine Vibrio strain. Kim YJ J Microbiol; 2004 Jun; 42(2):156-9. PubMed ID: 15357312 [TBL] [Abstract][Full Text] [Related]
6. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. Asai Y; Kawagishi I; Sockett RE; Homma M J Bacteriol; 1999 Oct; 181(20):6332-8. PubMed ID: 10515922 [TBL] [Abstract][Full Text] [Related]
7. Mutations alter the sodium versus proton use of a Bacillus clausii flagellar motor and confer dual ion use on Bacillus subtilis motors. Terahara N; Krulwich TA; Ito M Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14359-64. PubMed ID: 18796609 [TBL] [Abstract][Full Text] [Related]
8. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284 [TBL] [Abstract][Full Text] [Related]
9. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria. Dimroth P Bioessays; 1991 Sep; 13(9):463-8. PubMed ID: 1665692 [TBL] [Abstract][Full Text] [Related]
10. Specific inhibition of the Na(+)-driven flagellar motors of alkalophilic Bacillus strains by the amiloride analog phenamil. Atsumi T; Sugiyama S; Cragoe EJ; Imae Y J Bacteriol; 1990 Mar; 172(3):1634-9. PubMed ID: 2155207 [TBL] [Abstract][Full Text] [Related]
11. Rotational fluctuation of the sodium-driven flagellar motor of Vibrio alginolyticus induced by binding of inhibitors. Muramoto K; Magariyama Y; Homma M; Kawagishi I; Sugiyama S; Imae Y; Kudo S J Mol Biol; 1996 Jun; 259(4):687-95. PubMed ID: 8683575 [TBL] [Abstract][Full Text] [Related]
12. Novel Amiloride Derivatives That Inhibit Bacterial Motility across Multiple Strains and Stator Types. Islam MI; Bae JH; Ishida T; Ridone P; Lin J; Kelso MJ; Sowa Y; Buckley BJ; Baker MAB J Bacteriol; 2021 Oct; 203(22):e0036721. PubMed ID: 34516280 [TBL] [Abstract][Full Text] [Related]
13. Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. Kojima S; Asai Y; Atsumi T; Kawagishi I; Homma M J Mol Biol; 1999 Jan; 285(4):1537-47. PubMed ID: 9917395 [TBL] [Abstract][Full Text] [Related]
14. Effect of intracellular pH on the torque-speed relationship of bacterial proton-driven flagellar motor. Nakamura S; Kami-ike N; Yokota JP; Kudo S; Minamino T; Namba K J Mol Biol; 2009 Feb; 386(2):332-8. PubMed ID: 19133273 [TBL] [Abstract][Full Text] [Related]
15. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression. Kawagishi I; Imagawa M; Imae Y; McCarter L; Homma M Mol Microbiol; 1996 May; 20(4):693-9. PubMed ID: 8793868 [TBL] [Abstract][Full Text] [Related]
16. High-speed rotation and speed stability of the sodium-driven flagellar motor in Vibrio alginolyticus. Muramoto K; Kawagishi I; Kudo S; Magariyama Y; Imae Y; Homma M J Mol Biol; 1995 Aug; 251(1):50-8. PubMed ID: 7643389 [TBL] [Abstract][Full Text] [Related]
17. A primary sodium pump gene of the moderate halophile Halobacillus dabanensis exhibits secondary antiporter properties. Yang L; Jiang J; Zhang B; Zhao B; Wang L; Yang SS Biochem Biophys Res Commun; 2006 Jul; 346(2):612-7. PubMed ID: 16774742 [TBL] [Abstract][Full Text] [Related]
18. Effects of salts on aerobic metabolism of Debaryomyces hansenii. Sánchez NS; Arreguín R; Calahorra M; Peña A FEMS Yeast Res; 2008 Dec; 8(8):1303-12. PubMed ID: 18752629 [TBL] [Abstract][Full Text] [Related]
19. Moderately halophilic, alkalitolerant Halomonas campisalis MCM B-365 from Lonar Lake, India. Joshi AA; Kanekar PP; Kelkar AS; Sarnaik SS; Shouche Y; Wani A J Basic Microbiol; 2007 Jun; 47(3):213-21. PubMed ID: 17518414 [TBL] [Abstract][Full Text] [Related]
20. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition. Fujiwara-Nagata E; Eguchi M FEMS Microbiol Lett; 2004 May; 234(1):163-7. PubMed ID: 15109735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]