These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 15213979)
1. Effect of pressure on electrophoretic mobility of polystyrene latex particles. Sakakibara A; Kitagawa S; Tsuda T Electrophoresis; 2004 Jun; 25(12):1817-22. PubMed ID: 15213979 [TBL] [Abstract][Full Text] [Related]
2. Capillary zone electrophoresis of sub-microm-sized particles in electrolyte solutions of various ionic strengths: size-dependent electrophoretic migration and separation efficiency. Radko SP; Stastna M; Chrambach A Electrophoresis; 2000 Nov; 21(17):3583-92. PubMed ID: 11271475 [TBL] [Abstract][Full Text] [Related]
3. Separation and characterization of sub-microm- and microm-sized particles by capillary zone electrophoresis. Radko SP; Chrambach A Electrophoresis; 2002 Jul; 23(13):1957-72. PubMed ID: 12210247 [TBL] [Abstract][Full Text] [Related]
4. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility. Basinska T; Slomkowski S; Kazmierski S; Chehimi MM Langmuir; 2008 Aug; 24(16):8465-72. PubMed ID: 18630979 [TBL] [Abstract][Full Text] [Related]
5. Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis. White CM; Holland LA; Famouri P Electrophoresis; 2010 Aug; 31(15):2664-71. PubMed ID: 20665924 [TBL] [Abstract][Full Text] [Related]
7. Capillary zone electrophoresis for the characterization of latex particles. Vanhoenacker G; Goris L; Sandra P Electrophoresis; 2001 Aug; 22(12):2490-4. PubMed ID: 11519952 [TBL] [Abstract][Full Text] [Related]
8. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants. Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A J Colloid Interface Sci; 2006 May; 297(1):170-81. PubMed ID: 16289188 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of immunoglobulin G adsorption on polystyrene microspheres. Sofińska K; Adamczyk Z; Barbasz J Colloids Surf B Biointerfaces; 2016 Jan; 137():183-90. PubMed ID: 26296563 [TBL] [Abstract][Full Text] [Related]
10. Surface-functionalized latex particles as controlling agents for the mineralization of zinc oxide in aqueous medium. Muñoz-Espí R; Qi Y; Lieberwirth I; Gómez CM; Wegner G Chemistry; 2005 Dec; 12(1):118-29. PubMed ID: 16224809 [TBL] [Abstract][Full Text] [Related]
11. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects. Jellema LC; Mey T; Koster S; Verpoorte E Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967 [TBL] [Abstract][Full Text] [Related]
12. Interaction of bacterial endotoxine (lipopolysaccharide) with latex particles: application to latex agglutination immunoassays. Peula-García JM; Molina-Bolivar JA; Velasco J; Rojas A; Galisteo-González F J Colloid Interface Sci; 2002 Jan; 245(2):230-6. PubMed ID: 16290356 [TBL] [Abstract][Full Text] [Related]
13. Poly(styrene/alpha-tert-butoxy-omega-vinylbenzylpolyglycidol) microspheres for immunodiagnostics. Principle of a novel latex test based on combined electrophoretic mobility and particle aggregation measurements. Radomska-Galant I; Basinska T Biomacromolecules; 2003; 4(6):1848-55. PubMed ID: 14606918 [TBL] [Abstract][Full Text] [Related]
14. Hofmeister effects on the colloidal stability of an IgG-coated polystyrene latex. López-León T; Jódar-Reyes AB; Ortega-Vinuesa JL; Bastos-González D J Colloid Interface Sci; 2005 Apr; 284(1):139-48. PubMed ID: 15752795 [TBL] [Abstract][Full Text] [Related]
15. Phagocytic activity of alveolar macrophages toward polystyrene latex microspheres and PLGA microspheres loaded with anti-tuberculosis agent. Hasegawa T; Hirota K; Tomoda K; Ito F; Inagawa H; Kochi C; Soma G; Makino K; Terada H Colloids Surf B Biointerfaces; 2007 Nov; 60(2):221-8. PubMed ID: 17683920 [TBL] [Abstract][Full Text] [Related]
16. SANS study of the interactions among DNA, a cationic surfactant, and polystyrene latex particles. Cárdenas M; Dreiss CA; Nylander T; Chan CP; Cosgrove T; Lindman B Langmuir; 2005 Apr; 21(8):3578-83. PubMed ID: 15807604 [TBL] [Abstract][Full Text] [Related]
17. Principle of a new immunoassay based on electrophoretic mobility of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres: application for the determination of helicobacter pylori IgG in blood serum. Basinska T; Wisniewska M; Chmiela M Macromol Biosci; 2005 Jan; 5(1):70-7. PubMed ID: 15635718 [TBL] [Abstract][Full Text] [Related]
18. Electrophoresis system for high temperature mobility measurements of nanosize particles. Rodriguez-Santiago V; Fedkin MV; Lvov SN Rev Sci Instrum; 2008 Sep; 79(9):093302. PubMed ID: 19044402 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of nanoparticle deposition on polystyrene latex particles. Sadowska M; Adamczyk Z; Nattich-Rak M Langmuir; 2014 Jan; 30(3):692-9. PubMed ID: 24383456 [TBL] [Abstract][Full Text] [Related]
20. Separation and detection of individual submicron particles by capillary electrophoresis with laser-light-scattering detection. Rezenom YH; Wellman AD; Tilstra L; Medley CD; Gilman SD Analyst; 2007 Dec; 132(12):1215-22. PubMed ID: 18318282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]